
为了找出color、rarity、flower number、type of species对price的影响,由此,price为因变量,color、rarity、flower number、type 为自变量。
研究自变量对因变量的影响,可以选用的方法有两种,一种是传统的线性回归模型OLS,另一种是广义线性模型GLM(Generalized Linear Model)。传统模型(OLS)要求因变量服从正态分布,广义线性模型(GLM)则适用的范围更广,不要求因变量一定服从正态分布,并且方差也可以不稳定。
第一步:考察因变量price的分布类型。
基于以上的分析,为了判断应该适用OLS还是使用GLM。需要先对因变量price的分布状况进行分析。首先,检验因变量price是否服从正态分布,检验的结果如下:
Table 1 Tests of Normality
|
Kolmogorov-Smirnova |
Shapiro-Wilk |
||||
|
Statistic |
df |
Sig. |
Statistic |
df |
Sig. |
Price |
.149 |
156 |
.000 |
.818 |
156 |
.000 |
a. Lilliefors Significance Correction |
上表是正态性检验的结果,K-S检验和S-W检验的SIG.全部小于0.05.由此可以知道,因变量price不服从正态分布。因此,研究color、rarity、flower number、type of species对price的影响不能选用传统线性模型(OLS)分析,必须选用GLM模型。
通过price不服从正态分布这一结论,得出必须选用GLM模型之后,还需要进一步找出因变量price到底服从哪种分布。经过尝试,得出因变量price服从Gamma分布。
第二步:GLM分析
确定选用GLM模型和因变量price是服从Gamma分布的,进行GLM分析,结果如下:
Table 2
Case Processing Summary |
||
|
N |
Percent |
Included |
156 |
100.0% |
Excluded |
0 |
0.0% |
Total |
156 |
100.0% |
上表的结果陈述了,参与分析的案例个数为156。
Table 3
Categorical Variable Information |
||||
|
N |
Percent |
||
Factor |
Color |
Green |
30 |
19.2% |
Red |
30 |
19.2% |
||
White |
29 |
18.6% |
||
Black |
30 |
19.2% |
||
Yellow |
22 |
14.1% |
||
Blue |
15 |
9.6% |
||
Total |
156 |
100.0% |
||
Rarity |
Rare |
83 |
53.2% |
|
Commom |
73 |
46.8% |
||
Total |
156 |
100.0% |
||
FlowerNumber |
Single flower |
72 |
46.2% |
|
Multiple flowers |
84 |
53.8% |
||
Total |
156 |
100.0% |
||
TypeofSpecies |
Native species |
61 |
39.1% |
|
First generation hybrids |
42 |
26.9% |
||
Complex hybrids |
53 |
34.0% |
||
Total |
156 |
100.0% |
上表的结果展现了4个自变量中每个类别的选择的人数及其占比。
Table 4
Goodness of Fita |
|||
|
Value |
df |
Value/df |
Deviance |
68.838 |
146 |
.471 |
Scaled Deviance |
166.574 |
146 |
|
Pearson Chi-Square |
68.353 |
146 |
.468 |
Scaled Pearson Chi-Square |
165.400 |
146 |
|
Log Likelihoodb |
-767.832 |
|
|
Akaike's Information Criterion (AIC) |
1557.665 |
|
|
Finite Sample Corrected AIC (AICC) |
1559.498 |
|
|
Bayesian Information Criterion (BIC) |
1591.213 |
|
|
Consistent AIC (CAIC) |
1602.213 |
|
|
Dependent Variable: Price Model: (Intercept), Color, Rarity, FlowerNumber, TypeofSpecies |
|||
a. Information criteria are in small-is-better form. |
|||
b. The full log likelihood function is displayed and used in computing information criteria. |
上表是GLM模型的拟合优度分析结果,拟合优度分析是用于反映模型总体上对数据信息的表达是否充分。Deviance拟合优度检验法和Pearson Chi-Square拟合优度检验法计算出的显著性水平分别为0.471和0.468,均大于0.05,由此可以知道,模型的拟合情况良好,即模型能够比较真实可靠地反映出数据。
来CDA学业务数据分析师,SPSS理论结合实战进行项目数据分析,助你成为从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才,点击了解课程详情!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18