
十大令人惊奇的大数据真相
如今,“大数据”是科技界当之无愧的热词,围绕着它有众多的新闻和炒作。最近的研究显示,2013年,全球范围内花费在大数据上的资金就高达近310亿美元。这项研究预测,这个数字将会持续增长,到2018年将会达到1140亿。当然,有关大数据的新闻也不全都是事实,这其中存在着许多夸张的宣传,很多企业经营者并不了解大数据的实质,他们也并不清楚为何大数据花费如此之高。
尽管全球各地正想举办关于大数据的学术研讨会和商业论坛,但这个出现在新时代的科技名词仍有很多方面不为人所知。简单来说,大数据是指在互联网时代,每天都在持续稳定增加的海量数据,这些数据的量十分巨大,能够帮助我们了解这个世界。如果你想走近“大数据”,了解“大数据”,那就跟随我一起看看下面几个有关大数据的真相吧。
1.全球数据的90%产生于过去2年内。
2.当前数据产生的速度非常快,以今天的数据生产速度,我们可以在2天内生产出2003年以前的所有数据。
3.行业内获取并且存储的数据量每1.2年就会翻一番。
4.到2020年,全球数据量将由现在的3.2ZBytes变为40ZBytes(1ZB=1024EB,1EB=1024PB,1PB=1024TB)。
5.仅Google一家搜索引擎,每秒就处理4万次搜索查询,一天之内更是超过35亿次。
6.最近的统计报告显示,我们每分钟在Facebook上贡献180万次赞,上传20万张照片。与此同时,我们每分钟还发送2.04亿封邮件,发送27.8万推文。
7.每分钟大约有100小时的视频被传上类似YouTube这样的视频网站。更有趣的是,要花费15年才能看完一天之内被传到YouTube上的全部视频。
8.AT&T被认为是能够用单一数据库存储最多数据量的数据中心。
9.在美国,很多新的IT工作将被创造出来以处理即将到来的大数据工程潮,而每个这样的职位都将需要3个额外职位的支持,这将会带来总计600万个新增工作岗位。
10.全球每分钟会新增570个网站。这一统计数字至关重要,也具有颠覆性。
这就是10大令人惊奇的大数据真相,你震惊了吗?全球企业应该更加关注大数据的不同方面,因为处理这些大数据已经成为这个时代的重中之重。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16