
大数据 是一个革命性的概念
我和许多经理人讨论大数据现象时,也同样提到,我很喜欢大数据这个概念的一切,但唯独不喜欢这个名字。大数据是一个革命性的概念,它可能握有改变几乎各行各业的能力。不过,基于某几项塬因,这个专有名词本身大有问题。
第一个问题是,「大」只是这种新型态的数据有别于既有数据的面向之一,而且对许多组织而言,「大」并非最重要的特质。根据2012年由大数据顾问业者NewVantage Partners针对大型组织的五十名经理人所做的一项调查,在大公司里,他们所处理的较属于「数据缺乏结构」的问题,而非「数据量过于庞大」的问题。在该调查中,有30%的受访者表示,他们所处理的大数据问题主要在于「必须分析来自多个来源的数据」;另有22%的受访者则主要聚焦于「分析新型态的数据」;还有12%的人主要是「分析动态的数据串流」;只有28%的受访者是以分析大于1TB的数据集为主要工作,而且这群人当中有13%是在处理介于 1TB与100TB间的数据集,但若以大数据的标准来看,这样的数据量并不算多。
「大数据」这个称呼还存在着其他问题。「大」这个字,很明显是相对的──就算今天看起来很「大」,并不表示到了明天仍然算「大」。而且,前述调查也显示,对一家组织而言的「大」,对另一家组织来说可能很「小」。我个人基本上认为,「大」应该指的是1/10PB以上的数据,但就算数据真的多到会造成影响,也不过就是必须购买更多硬件来储存与处理这些数据而已。
有人以三个V(量〔volume〕、庞杂程度〔variety〕、累积的速度〔velocity〕)来定义大数据,但有人又另外加了几个V(真实性〔veracity〕、价值〔value〕──或许下一个V是「能够花钱搞定」〔venality〕),然而这样的描述也有问题。我认同这些都是大数据的重要特质,但假如你手边的数据只符合其中一两项的V呢?难道你就因此只握有三分之一或五分之二的大数据吗?
另一个问题是,太多人(尤其是相关软硬件厂商)已经把「大数据」一词拿来指称任何接受分析的数据,或者夸张一点,连纯粹呈报用的数据,或传统的企业内部资讯,也全都算在内。相关软硬件厂商与企管顾问,把任何热门新字眼拿来套用在自己既有的产品或服务上,已经是他们的惯用伎俩;在大数据方面,他们肯定也使用了这样的手法。假如你已开始在阅读谈论大数据的书籍、文章或广告,千万小心,里头若提到「数据导向决策」或是传统的数据分析手法,你所吸收的想法或许很有用、很有价值,但并不能算是什么新东西。
基于定义「大数据」时的上述问题,我(以及我徵询过其意见的一些专家)估计,这个不幸的术语,可能会比别的术语短命。媒体与新创企业都爱用这个字眼,但我已观察到,一些在大企业从事资讯工作的人,尤其是在银行、运输业者等已经长年掌握庞大数据的企业服务的人士,都不太爱用这样的字眼。简单讲,他们认为,这一代的新数据来源与型态,不过是先前好几代新东西的其中一代而已。当然,这并不表示「先前大家认知为大数据的那种现象」将会消失。假如你是要描述过去十年左右冒出来、种类繁多的大量新型态数据,就我所知,「大数据」依旧是最好的统称术语。
不过,由于这字眼实在太不精确,企业必须多解构一些,才能修正自己的策略,并且让利害关系人知道,管理团队有意如何运用这些新型态的数据,以及哪些类型的数据最为重要。大数据当然有许多不同的变种可以选择─而且每一种特质都有多种可能的选择,如图表1-2所示。你可以先从每一行之中选择一项。
换句话说,你与其说「我们正针对大数据推动一项硬件计划」,还不如说「我们正准备分析来自于ATM与各分行的影音数据,以求对顾客关系有更深入的了解」,会比较有建设性一些。或者,假如你服务于医疗业,你可以决定要「整合电子病历与基因数据,提供个人化的治疗方案」。此举除了有助于厘清目标与策略,也有助于避免无止境地讨论涉及的数据量究竟是大还是小(事实上,即便发展的是值得崇敬的出色事业,还是有少数企业承认,他们只有「小数据」需要处理而已─ 由此我也学到,若要让一个专有名词真正管用,就必须把彼此相对的两种情况都囊括进去).
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16