
HBTC2012峰会在北京举行,俄亥俄州立大学的教授张晓东老师就并行处理在大数据分析中所面对的挑战做了精彩的演讲。
张晓东重点讲了并行计算对大数据以及现有的高性能计算的计算模式是否适应大数据。第一步先讲一下在大数据中有哪些非常广应用,现有的数据库是不能使用的,很简单数据量太大了。同时,大数据的要求不光是高性能同时还要有更高的。而且没有什么硬件支持,都是用非常廉价的硬件。第二个问题都是学科的研究,因为它的应用范围非常广。数据的格式等都不一样。第三个问题是应用需求非常廉价的架构,所以可以看到现有的数据库是不适合的。它的价格是非常昂贵的,所以我们我现在用的主要是用开源的。
张晓东认为今天我们进入到一个“数据是检验真理的一个重要的标准”的时代。对算法有了新的需求。我今天的讲座想主要是聚焦在计算模式上的变化,计算尤其是系统设计发生了什么样的变化过去我们用的是高性能计算的模型。
对大数据来讲最主要的是在模型中做计算的约束是非常大的。我们看BSP模型,为什么在过去用到高性能计算上,今天在大数据不能用。之后再做并行计算,之后再做篡数,过去做的所有的高性能计算都是围绕这个模型来的。
如果我们有了硬件、有了软件,22年前它就总结了高性能计算,它画了一个圈,我们所有的努力都在这里面。
BSP模型有数据吗?因为高性能计算数据并不是重要的,主要是以计算为主的。大数据更不在里面了。今天做大数据计算的时候,是不能与硬件相关的我不能说找到英特尔说要造一个大数据。
所以我们现在用的。我们的模型是今天高性能计算是不能保证的。
今天为什么要做并行计算,并行计算给我们带来了什么样的障碍?scale-out是什么概念?张晓东认为给大家举一个例子,2008年的时候Google用processed算法计算一个PB的计算量,用了1个小时2分钟。2011年10PB的数据用了6小时27分钟。我们比较要有非常高的并行度。我们在高并行度下面遇到的第一个困难是,没有特殊的通信硬件来给我们支持。这不像高性能计算。第二Hadoop的模型非常简单。第三,没有软件的工具来帮助我们做。另外,当你放下了数据以后是不能传输的,基本上是不能动的。今天这个会议是为了Hadoop。我们对引擎本身是没有抱怨的,问题是如何利用引擎处理大数据。如果我们只永远是的引擎只能做简单的分析。这个引擎有非常好的优点,第一它的dependency是非常小的。另外一个工作是非常简单的。我们必须要有高可用性的大数据。
如果一个数据在做负载的时候,我们要注意,如果用不好也是费用很高的。看到了当application,你想做一个的话,现在的是不支持的。如果是在不同的系统上,他们两个想做一个communication也是不支持的。
第二个问题,如果一个使用者想换个思路。如果你有一个MP可以直接翻译过去,通过机器提高了各种各样的计算。人在实际中用手来写是不一样的,75%是又机器来生成的。他在做项目的时候可以节省4倍的时间。
最后一个问题,在现有的Hadoop没有给你任何的信息,用户是不知道的,你怎么放进去的时候取这个数据的时候要非常地低。你做这样的设计是不是也改变了Hadoop的引擎。最后我们发现考了三个方面都是很基本的话,那么也是它广泛应用的原因。他们现在在整个的关键信息在什么地方?从Facebook的角度来讲,这个是一个Hadoop,用它的时候第一要存到高的数据中,如果一个用户首先用的是YSmart做示范。一个Hadoop是一个大数据中心的引擎。本身它就可以做分析,我们一个引擎只能完成一个转的操作问题是我们如何将引擎最原始的动力化为今天的支撑。因为我们相信Hadoop是一个引擎并且起了很重要的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29