京公网安备 11010802034615号
经营许可证编号:京B2-20210330
HBTC2012峰会在北京举行,俄亥俄州立大学的教授张晓东老师就并行处理在大数据分析中所面对的挑战做了精彩的演讲。
张晓东重点讲了并行计算对大数据以及现有的高性能计算的计算模式是否适应大数据。第一步先讲一下在大数据中有哪些非常广应用,现有的数据库是不能使用的,很简单数据量太大了。同时,大数据的要求不光是高性能同时还要有更高的。而且没有什么硬件支持,都是用非常廉价的硬件。第二个问题都是学科的研究,因为它的应用范围非常广。数据的格式等都不一样。第三个问题是应用需求非常廉价的架构,所以可以看到现有的数据库是不适合的。它的价格是非常昂贵的,所以我们我现在用的主要是用开源的。
张晓东认为今天我们进入到一个“数据是检验真理的一个重要的标准”的时代。对算法有了新的需求。我今天的讲座想主要是聚焦在计算模式上的变化,计算尤其是系统设计发生了什么样的变化过去我们用的是高性能计算的模型。
对大数据来讲最主要的是在模型中做计算的约束是非常大的。我们看BSP模型,为什么在过去用到高性能计算上,今天在大数据不能用。之后再做并行计算,之后再做篡数,过去做的所有的高性能计算都是围绕这个模型来的。
如果我们有了硬件、有了软件,22年前它就总结了高性能计算,它画了一个圈,我们所有的努力都在这里面。
BSP模型有数据吗?因为高性能计算数据并不是重要的,主要是以计算为主的。大数据更不在里面了。今天做大数据计算的时候,是不能与硬件相关的我不能说找到英特尔说要造一个大数据。
所以我们现在用的。我们的模型是今天高性能计算是不能保证的。
今天为什么要做并行计算,并行计算给我们带来了什么样的障碍?scale-out是什么概念?张晓东认为给大家举一个例子,2008年的时候Google用processed算法计算一个PB的计算量,用了1个小时2分钟。2011年10PB的数据用了6小时27分钟。我们比较要有非常高的并行度。我们在高并行度下面遇到的第一个困难是,没有特殊的通信硬件来给我们支持。这不像高性能计算。第二Hadoop的模型非常简单。第三,没有软件的工具来帮助我们做。另外,当你放下了数据以后是不能传输的,基本上是不能动的。今天这个会议是为了Hadoop。我们对引擎本身是没有抱怨的,问题是如何利用引擎处理大数据。如果我们只永远是的引擎只能做简单的分析。这个引擎有非常好的优点,第一它的dependency是非常小的。另外一个工作是非常简单的。我们必须要有高可用性的大数据。
如果一个数据在做负载的时候,我们要注意,如果用不好也是费用很高的。看到了当application,你想做一个的话,现在的是不支持的。如果是在不同的系统上,他们两个想做一个communication也是不支持的。
第二个问题,如果一个使用者想换个思路。如果你有一个MP可以直接翻译过去,通过机器提高了各种各样的计算。人在实际中用手来写是不一样的,75%是又机器来生成的。他在做项目的时候可以节省4倍的时间。
最后一个问题,在现有的Hadoop没有给你任何的信息,用户是不知道的,你怎么放进去的时候取这个数据的时候要非常地低。你做这样的设计是不是也改变了Hadoop的引擎。最后我们发现考了三个方面都是很基本的话,那么也是它广泛应用的原因。他们现在在整个的关键信息在什么地方?从Facebook的角度来讲,这个是一个Hadoop,用它的时候第一要存到高的数据中,如果一个用户首先用的是YSmart做示范。一个Hadoop是一个大数据中心的引擎。本身它就可以做分析,我们一个引擎只能完成一个转的操作问题是我们如何将引擎最原始的动力化为今天的支撑。因为我们相信Hadoop是一个引擎并且起了很重要的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21