
大数据对数据中心意味着什么
大数据的计算和存储需求无疑正推动着存储硬件、网络基础设施和不断增长的新的计算需求处理方式的发展。对于大数据分析而言,最重要的基础设施莫过于存储设备了。
关于延迟性
大数据分析涉及到对社交媒体和交易数据的跟踪,这需要利用实时的战术决策。因此,大数据存储不能出现延迟状况或过时数据的状况。有些应用程序可能需要实时数据的以便进行实时的决策。存储系统必须能够在不牺牲性能的情况下向外扩展,这可以通过实施一个基于闪存的存储系统来实现。
容量能力
那些超过PB级规模的数据即可被认为是大数据。随着数据量的飞速增长,企业的存储设备也必须是高度可扩展的、且灵活的,以保证整个系统不会被打乱,进而重新增加存储。大数据转化为大量的元数据,所以传统的文件系统无法支持。为了减少可扩展性,面向对象的文件系统应该是灵活的。
安全性
由于交叉引用数据处于一个新的水平,会产生更大的形象图,新数据级别的安全注意事项可能需要考虑现有IT场景。存储设备应该能够在不牺牲可扩展性或延迟性能的前提下处理这些类型的数据级别的安全需求。
灵活性
大数据通常采用商业智能应用程序,这需要数据集成和迁移。然而,考虑到大数据的规模,存储系统需要修复而不能涉及任何数据的迁移需求,同时需要有足够的灵活性以适应不同类型的数据源,再次,也不能以牺牲性能或延迟性为代价。企业应谨慎考虑所有当前和未来可能的使用情况和场景,以进行存储系统的规划和设计。
成本因素
大数据项目也会涉及到大的成本。大数据分析所需的最昂贵的组件是存储设备。某些技术像重复数据删除可以使用磁带备份、数据冗余和构建定制的硬件,而不是使用市场上可以买到的任何可用的存储设备,这样可以帮助企业显著降低成本。
保证正常访问
由于大数据分析是用于跨多个平台和主机系统,需要有一个更大的交叉引用数据,并将所有这些结合在一起,以便提供一个形象图。因此,存储设备必须能够在同一时间处理来自不同源系统中的数据。
以上就是大数据影响数据中心基础设施的6个方面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02