京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据思维对P2P领域的启发作用
当今的时代被称为大数据时代,网民和消费者的界限正在消弭,企业的疆界变得模糊,数据成为核心的资产,并将深刻影响企业的业务模式,甚至重构其文化和组织结构。因此,大数据对国家治理模式、对企业的决策、组织和业务流程、个人生活方式都将产生巨大的影响。如果不能利用大数据更加贴近消费者、深刻理解需求、高效分析信息并作出预判,所有传统公司都只能沦为新型用户平台级公司的附庸,其衰落不是管理能扭转的。
数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素;而人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。下面说说B2C和C2C中的大数据应用对P2P大数据领域的启发作用以及P2P该如何借助大数据技术实现产业腾飞。
大数据在C2C和B2C中应用的典型事例——淘宝和淘宝商城
淘宝网为其主打的C2C和B2C两大商业模式引进了大数据技术,通过设计的三大工具来让每一位客户了解其中、感受其中和收益其中。
一、淘宝指数
淘宝指数是淘宝官方推广的免费工具,对于不想花钱而想享受大数据的小资本商家有很大的帮助,通过此工具可以分析商品的市场走向,研究消费者的年龄、地域、消费层级、星座爱好等数据信息,从而为商家进行精准的受众合理化分析。
二、流量解析
流量解析是淘宝的数据洞悉类产品,通过记录一段历史时期内关键词或类目在淘宝的各类市场数据,帮助商家洞悉市场趋势变化情况,从而更好的设置关键词的选择策略和竞价策略,以求花最少的钱办最大的事儿。
三、数据魔方
数据魔方是淘宝出品的一款收费类数据产品。主要提供行业数据分析、店铺数据分析,为商家在推广方面提供助力。商家可以根据数据魔方查询的数据维度去衡量每个关键词的行业竞争度如何,然后选择竞争度好的关键词用于推广。筛选的关键词在符合自己产品属性的前提下,然后在各个维度下选择推广费用在预期之下的关键词,竞争度和订单竞争度分别按序排列,从而筛选竞争度强的关键词。
大数据时代最大的转变就是——放弃对因果关系的渴求,追求相关关系的融合。
P2P该如何借助大数据技术实现产业腾飞
通过大数据在其它领域的应用,P2P从中学习到了许多经验,通过实践,重点解决了领域内的三个问题:第一是解决运营交易成本过高的问题。网银降低了20万个网点成本。第二是解决资产与负债流动性不匹配的问题。P2P的核心价值就是体现资产证券化,能够自由转让,流动性自然就会进入一个良性循环。第三是拓展了四千万中小微企业市场。互联网金融出现以后,更大的变化是把市场体量做大了,不是只服务于我们现有的客户,还可以把碎片化的需求和供给进行整合,进而细化渗透到很多中小企业市场和中小客户市场。
在传统的借贷流程中,对于借款人的信息审核,机构是依靠借款人自己提供的各类信息来判定其还款能力。但此种审核方式有四大问题:其一,用传统信息获取渠道判断信息真伪的成本较高;其二,由于全程需要人工参与,既增加了道德风险,又导致效率极其低下;其三,传统的风险评估模型中,对于借款人资产状况评估的权重过高;其四,贷款人隐藏风险的难度较低,造假成本较低。
如果我们用大数据的角度来构思,就可以发现应该把更多权重放在借款人日常生活的交易数据及社交数据上,比如借款人一般都在哪里消费、月均消费金额是多少、消费支出中的分布情况如何、微博微信之类的社交圈活跃度如何等诸如此类的问题。
这类数据具有很好的连贯性,我们可以从中分析很多的用户特性和习惯轨迹并反向推断借款人的实际财务状况,进行风险筛选;也能大幅增加借款人的违约成本从而警示借款人遵守规则、按期还款。最重要的是,这些数据造假可能性非常低,因为都是大数据环境下的各类碎片信息收集和分析,真实性基本可以做到百分之百。
拥抱大数据目前存在两大主要问题。首先,数据全量在线。目前就国内来说,政府和银行体系掌握大量的基础数据,但太多系统都是孤立与封闭的,有无数信息孤岛等待联通,诸如政府管理的社保信息、不动产信息等。而银行掌握着最重要的资金交易数据,也基本是完全封闭的,并没有开放性的合作。
其次,一旦数据开放共享的基础设施完善后,用户的隐私保护将会是一个大问题。P2P网络借贷商业模式中,打破借贷双方信息不对称是非常主要的服务内容,参与交易的借贷双方信息透明度越高,越能促进交易的繁荣发展。
在此,我们期待更多权威信用信息分享,可以是官方的,也可以是民间的。大数据时代的到来正好为这一美好愿景提供了可能,数据的量化、公开化、透明化是P2P行业降低运营成本、提升企业安全、保证行业健康发展的基础所在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09