京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据人才的工作内容及年薪比较
随着大数据时代的到来,数据分析与探勘成为科技显学,各行各业对于大数据的浓厚兴趣也直接反映在大数据人才的丰厚薪资中。
根据美国大数据及商业智能软体公司 SiSense 调查研究指出1,资讯分析相关人才起薪约为年薪 5.5 万美元,换句话说,相较美国大学毕业生平均年薪为 4.76 万美元,高出 7400 美元,而最高薪的数据科学家,平均年薪为 13.2 万美元,打败一大票科技公司的高阶工程师,而且这个差距还在继续拉大中。
以下根据 Payscale 所提供的职位基本年薪做参考,为大家整理了四个最常见的大数据人才工作内容以及薪资范围。
数据分析师
这个职位大概是最常见的,「数据分析师」指的是不同行业中,专门从事行业内数据蒐集、整理、分析,并依据这些数据做出研究、评估的专业人员。
这类职缺通常要求应徵者有数学、统计、或是电脑科学等的相关学位跟背景,最常见的工作技能要求是 SQL、R、SAS、Excel,以及随着需要处理的数据量日渐庞大,Hadoop 也被许多公司列为必备的基本条件之一。
美国地区数据科学家的年薪大约在 $36,139 到 $77,696 美元之间(约等于年薪台币 110 万到 240 万),中间值大约是 $51,224 美元(台币 160 万)。拥有统计分析、数据建模(Data modeling)以及 SAS 等技能的应徵者一般来说更有机会得到高薪。
数据科学家
被《哈佛商业评论》誉为「21 世纪最性感工作」的数据科学家可以说是数据分析师的进化版。
两者的分别可以从职称的不同看出端倪:数据「分析师」统计分析数据作为评估基准来设计行销方案时,数据「科学家」则是把心力放在设计分析数据的演算法,提出不同的理论来测试这些结论,最后建立统计模型来判断消费者行为、找出最关键的行为诱发因子。
因此数据科学家需要具备程式开发的能力,例如 Java 或 Python,而且对机器学习(Machine Learning)领域有所了解。
美国地区的数据科学家年薪大约落在 $63,192 到 $142,118 美元间,中间值是 $96,579 美元,几乎是数据分析师的两倍。
数据架构师
数据架构师要负责建立和维持公司数据储存的技术基准,策划硬体和软体的结构,确保数据储存系统可以支持未来的数据量和分析需求。
数据架构师通常拥有电脑科学学位,并且精通数据库相关知识,像是关联式数据库(Relational database)、数据仓储(Data warehouse)、以及分散式数据系统(Distributed storage system)等等。
美国地区数据架构师的薪资范围是 $65,928 到 $147,868 美元,中间值为 $105,581 美元,以目前的趋势来看,比起 SQL ,擅长 OracleDB 的人才较容易得到高薪。
首席资讯长
首席资讯长(简称 CIO)是负责企业内部资讯系统和资讯资源规划和整合的高级行政管理人员,简单来说,这个最资深、最高级的职位要担起所有数据策略相关的责任,
CIO 通常会管理一个大团队,团队中的资深数据分析师、数据科学家会直接与 CIO 呈报,最后的决策再由 CIO 上报给董事会员。由于担任 CIO 的人选必须拥有一定的经验,因此这个职位通常会由董事会直接指派。
美国的公司通常给 CIO 的薪水从 $81,226 起跳至 $269,033 美元不等,中间值是 $142,269 美元。
你可能也听过数据工程师(Data engineers)、大数据分析师(Big data analysits)、数据专家(Data expert or Data specialist)等等职称,不过基本上这些都可以归类到上述四个职位。虽然拥有不同的职称,但往往这些角色的职责范围经常互相重叠,端看各公司如何分配工作内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17