
大数据人才的工作内容及年薪比较
随着大数据时代的到来,数据分析与探勘成为科技显学,各行各业对于大数据的浓厚兴趣也直接反映在大数据人才的丰厚薪资中。
根据美国大数据及商业智能软体公司 SiSense 调查研究指出1,资讯分析相关人才起薪约为年薪 5.5 万美元,换句话说,相较美国大学毕业生平均年薪为 4.76 万美元,高出 7400 美元,而最高薪的数据科学家,平均年薪为 13.2 万美元,打败一大票科技公司的高阶工程师,而且这个差距还在继续拉大中。
以下根据 Payscale 所提供的职位基本年薪做参考,为大家整理了四个最常见的大数据人才工作内容以及薪资范围。
数据分析师
这个职位大概是最常见的,「数据分析师」指的是不同行业中,专门从事行业内数据蒐集、整理、分析,并依据这些数据做出研究、评估的专业人员。
这类职缺通常要求应徵者有数学、统计、或是电脑科学等的相关学位跟背景,最常见的工作技能要求是 SQL、R、SAS、Excel,以及随着需要处理的数据量日渐庞大,Hadoop 也被许多公司列为必备的基本条件之一。
美国地区数据科学家的年薪大约在 $36,139 到 $77,696 美元之间(约等于年薪台币 110 万到 240 万),中间值大约是 $51,224 美元(台币 160 万)。拥有统计分析、数据建模(Data modeling)以及 SAS 等技能的应徵者一般来说更有机会得到高薪。
数据科学家
被《哈佛商业评论》誉为「21 世纪最性感工作」的数据科学家可以说是数据分析师的进化版。
两者的分别可以从职称的不同看出端倪:数据「分析师」统计分析数据作为评估基准来设计行销方案时,数据「科学家」则是把心力放在设计分析数据的演算法,提出不同的理论来测试这些结论,最后建立统计模型来判断消费者行为、找出最关键的行为诱发因子。
因此数据科学家需要具备程式开发的能力,例如 Java 或 Python,而且对机器学习(Machine Learning)领域有所了解。
美国地区的数据科学家年薪大约落在 $63,192 到 $142,118 美元间,中间值是 $96,579 美元,几乎是数据分析师的两倍。
数据架构师
数据架构师要负责建立和维持公司数据储存的技术基准,策划硬体和软体的结构,确保数据储存系统可以支持未来的数据量和分析需求。
数据架构师通常拥有电脑科学学位,并且精通数据库相关知识,像是关联式数据库(Relational database)、数据仓储(Data warehouse)、以及分散式数据系统(Distributed storage system)等等。
美国地区数据架构师的薪资范围是 $65,928 到 $147,868 美元,中间值为 $105,581 美元,以目前的趋势来看,比起 SQL ,擅长 OracleDB 的人才较容易得到高薪。
首席资讯长
首席资讯长(简称 CIO)是负责企业内部资讯系统和资讯资源规划和整合的高级行政管理人员,简单来说,这个最资深、最高级的职位要担起所有数据策略相关的责任,
CIO 通常会管理一个大团队,团队中的资深数据分析师、数据科学家会直接与 CIO 呈报,最后的决策再由 CIO 上报给董事会员。由于担任 CIO 的人选必须拥有一定的经验,因此这个职位通常会由董事会直接指派。
美国的公司通常给 CIO 的薪水从 $81,226 起跳至 $269,033 美元不等,中间值是 $142,269 美元。
你可能也听过数据工程师(Data engineers)、大数据分析师(Big data analysits)、数据专家(Data expert or Data specialist)等等职称,不过基本上这些都可以归类到上述四个职位。虽然拥有不同的职称,但往往这些角色的职责范围经常互相重叠,端看各公司如何分配工作内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16