
大数据时代如何构建高性能数据库平台
在数据爆炸的时代,给众多IT从业人员带来了相当大的困扰—伴随着大数据分析,商业智能的发展,数据量呈现指数增长,传统数据处理系统已不堪重负。在这样的背景下,“数据库平台的构建”逐渐成为一个备受关注的话题。
影响数据库性能的三要素
对于数据库系统而言,绝大多数情况下影响数据库性能的三个要素是:数据运算能力、数据读写时延和数据吞吐带宽,简称计算、时延、吞吐。计算指的是CPU的运算能力,时延是数据从存储介质跑到CPU所需的时间长短,吞吐则是数据从存储介质到CPU的道路宽度。一般情况下,关注计算和时延是比较多的,但是在数据量越来越多的情况下,吞吐也成为影响数据库性能的重要因素。如果吞吐带宽不够,会造成计算等待队列的增加,CPU占用率虚高不下。这种情况下,即使增加再多的计算资源也于事无补,相当于千军万马挤独木桥,马再好也是枉然。一个高性能的数据库平台,一定是计算、时延、吞吐三方面的能力齐头并进,相互匹配。
计算能力由CPU主频和核数决定,实践中看CPU占用率就能够大致确定CPU配置是否合适。时延的指标很简单,时间是衡量时延的唯一指标。吞吐量则是通过每秒在I/O流中传输的数据总量来衡量的。
从三要素到三方法
明确了影响性能的要素后,就可以着手改变各要素来提升数据库平台的性能。
1.计算能力:x86化的今天,提升计算能力就是:增加CPU内核数量或升级CPU主频。
2.时延能力:加快数据从存储介质到CPU的速度,即提升数据读写时延,从以下三方面努力:
a)降低存储介质的读写时延:使用电子寻址的Flash颗粒来替换旋转的机械磁头,是降低存储介质读写时延最有效的方法。实践中可结合数据吞吐量来确定是选择SAS总线上的SSD盘还是选择PCIE总线上的Flash卡。
b)降低网络的传送时延:网络时延则可以通过InfiniBand网络来解决,注意不要选择IPoIB,而是要使用RDS,相比传统UDP协议,网络延迟至少减一半。通过SRP协议,利用RDMA技术在网络层面传送SCSI指令和数据,使得数据库节点能够像操作本地SCSI设备一样读写远程的数据,对于时延的降低,不是FC网络能够企及的。
c)扩大存储层的数据缓存大小:存储层的数据缓存大小对时延也至关重要,如果有尽可能多的数据读写在缓存中进行,就避免了数据下盘。缓存的大小以及缓存算法都对缓存命中率有直接的影响,这一点往往被忽略。除了单点缓存之外,分布式缓存技术也是非常重要的,通过分布式缓存技术,可以避免单点缓存的局限性,扩大缓存的全局能力,增加缓存规模,提高缓存命中率。
3.吞吐能力:拓宽数据通路的方法有两种:使用高速InfiniBand网络、使用分布式存储。前者比较容易想到,实施也简单,基于FDR 的56Gb/s InfiniBand解决方案可实现每秒1.37亿条消息的信息通信速率,在16个计算节点上,性能表现比QDR 40Gb/s InfiniBand高出20%-30%,而与FC、万兆和4万兆以太网相比,性能更是领先了100%到300%,是最高效的计算和存储互联方案。对于后者,分布式存储,其好处在于不将数据集中存放在某几块存储介质上,而是将数据全部打散存放在多个存储节点的许多个介质上,这样避免在大规模数据并发读写访问时,存储介质的单点能力成为数据读写的瓶颈,通过分布式的并发能力来提升数据读写吞吐能力。注意的是,一定要使用高性能低时延的分布式块存储,分布式文件存储是无法满足性能要求的。
通过计算、时延、吞吐的三管齐下,通过使用SSD存储介质、InfiniBand网络交换以及分布式存储,数据库平台的性能将得到极大提升。
未来为是何种模样
高性能数据库系统未来向着内存化、云化的方向在不断发展。SAP的HANA内存数据库,Oracle 12c的内存特性,GemFire的分布式内存数据缓存,以及Spark的内存并行计算,都在昭示着内存化的未来方向,其本质还是通过内存的高速读写与高速总线来解决时延和吞吐问题。
数据库的云化,即DBaaS(数据库即服务),其核心就是整合IT基础设施中的硬软件,实现简单化、标准化和灵活性,提升可用性以及安全保障,同时降低成本。当然,云化在性能和QoS方面也对IT基础设施提出了更多增强性的挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29