
七家利用大数据博弈的初创公司
大数据业务有着非常光明的未来,2015年第一季度的1020笔交易创造了134亿美元的融资,成为继2000年以来的大数据融资之最。
想知道是谁引领了这股借贷狂潮吗?以下是利用大数据做业务的七家初创公司。一些公司自身利用大数据进行创新,还有一些公司的工作就是致力于使他人可获得大数据。不管是哪种,你都应该看看这些“游戏玩家”是如何利用大数据的。
1. Uber
现在很多人都听说过租车初创公司Uber,如今它已经风靡很多大型城市。但是有一点你可能不知道,那就是Uber以其在大数据方面的出色运用来达到优化、现代化、合理化业务运营的目的。
通过数据分析,Uber能够预测出客户的目的地,能够更有效地分配司机。而另一个有趣的例子就是:公司利用最近分析显示的数据来使得司机待在同一个地方就能收益最大化,甚至不需要开着车转来转去寻找潜在客户。
最后,Uber还利用数据来实施动态的高峰期定价,鼓励司机在出行用车需求高的时候多工作。
2. Foursquare
最近Foursquare重新宣布他们将使用数据挖掘技术来介绍一些用户喜欢的餐厅、景点或者购物中心。公司运用了社交网络分析之后不仅能够分析个体用户的喜好,还能知道他们何时与何人在一起。
所以,公司就能够为用户进行推荐以期望引导潮流。再加上其他的一些机器学习技术,Foursquare能够为消费者做出一些相关的建议,引导他们参与到当地的商业中去。
3. Zapier
近来,要使App之间相互交流已成为一个网上业务的主要挑战,但是Zapier就很好地解决了这个问题。它通过一个基于其他App上的触发器使用户创建Zaps。想要在Slack里收到你的Google邮件吗?想要从Evernote里将事件记录到Google邮件里吗?这些Zapier的zap都可以帮你解决。
Zapier通过使用用户的定性数据来决定下一个加入到系统之中的App,使其在满足用户更新方面的需求有求必应。
4. Feedzai
信用卡诈骗是一个非常严重的问题,随着移动支付越来越流行,这个问题只会越来越严重。Feedzai就是一家利用大数据来监测以及实时阻止诈骗的公司。
公司将机器学习技术和行为分析相结合,而不是单纯地使用基于规则的标准化诈骗监测。这种大数据的挖掘和使用就可以创造出一款新的追踪分析消费者购买行为的软件。这样的话当事态出现异常时,Feedzai就可以进行监测并且立刻发出警告。
5. Spotify
起初,提供音乐流媒体服务的Spotify可以让你以固定的订阅费听音乐,按照你自己的需求播放,并且还没有广告。Spotify依赖用量算法来将用户与其喜爱的音乐相连接。但是不幸的是,结果并不像公司预想的那样对用户有很大的帮助。
2014年初,公司收购了初创公司Echo Nest,这家公司主要是开发音乐选择的人工智能。新的人工智能取决于50多个因素,再加上用户选择的大量数据,能够提供非常有用的建议。最近,Spotify利用大数据来试图囊括更多的方面,比如说Facebook动态更新和天气通知。
6. PlaceIQ
虽然说从消费者的角度来看是有点奇怪,PlaceIQ是市场营销人员的一个梦想。网站浏览器上的cookies可以使市场营销人员理解消费者网上的行为踪迹,同样地,PlaceIQ使用地理位置追踪数据来告诉公司现实生活中消费者所在的地点。PlaceIQ还与人口数据相结合来帮助市场营销人员理解人们对于广告以及其他一些因素的反应,使其最大化媒体购买和其他活动支出。
7. Beyond Sports
Beyond Sports是一家荷兰公司,它的虚拟现实模拟器可以在现实世界比赛数据的基础之上创造足球训练项目。这项可获得数据的创新性利用可以使运动员在训练时,除了以他自己的表现作为参照,还可以以他想模仿的著名明星运动员的表现作为参照。当下,公司正在打算将这个技术应用到足球、自行车、曲棍球和冰球,这就意味着光看电影录像来学习比赛即将成为过去。
在接下来的几年当中,那些能够有效利用大数据的初创公司就会盈利。通过使用诸如 import.io、Google Analytics和Mixpanel等工具,公司企业可以处理数据以取得竞争性的利益。一旦错失那些可获得的数据分析以及多种类型检测的洞察力,这些都将会成为企业所不能承受的错误。
这些初创公司都在运用大数据进行博弈。我们可以学习它们的数据科学应用来获取更大的企业利润。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04