京公网安备 11010802034615号
经营许可证编号:京B2-20210330
七家利用大数据博弈的初创公司
大数据业务有着非常光明的未来,2015年第一季度的1020笔交易创造了134亿美元的融资,成为继2000年以来的大数据融资之最。
想知道是谁引领了这股借贷狂潮吗?以下是利用大数据做业务的七家初创公司。一些公司自身利用大数据进行创新,还有一些公司的工作就是致力于使他人可获得大数据。不管是哪种,你都应该看看这些“游戏玩家”是如何利用大数据的。
1. Uber
现在很多人都听说过租车初创公司Uber,如今它已经风靡很多大型城市。但是有一点你可能不知道,那就是Uber以其在大数据方面的出色运用来达到优化、现代化、合理化业务运营的目的。
通过数据分析,Uber能够预测出客户的目的地,能够更有效地分配司机。而另一个有趣的例子就是:公司利用最近分析显示的数据来使得司机待在同一个地方就能收益最大化,甚至不需要开着车转来转去寻找潜在客户。
最后,Uber还利用数据来实施动态的高峰期定价,鼓励司机在出行用车需求高的时候多工作。
2. Foursquare
最近Foursquare重新宣布他们将使用数据挖掘技术来介绍一些用户喜欢的餐厅、景点或者购物中心。公司运用了社交网络分析之后不仅能够分析个体用户的喜好,还能知道他们何时与何人在一起。
所以,公司就能够为用户进行推荐以期望引导潮流。再加上其他的一些机器学习技术,Foursquare能够为消费者做出一些相关的建议,引导他们参与到当地的商业中去。
3. Zapier
近来,要使App之间相互交流已成为一个网上业务的主要挑战,但是Zapier就很好地解决了这个问题。它通过一个基于其他App上的触发器使用户创建Zaps。想要在Slack里收到你的Google邮件吗?想要从Evernote里将事件记录到Google邮件里吗?这些Zapier的zap都可以帮你解决。
Zapier通过使用用户的定性数据来决定下一个加入到系统之中的App,使其在满足用户更新方面的需求有求必应。
4. Feedzai
信用卡诈骗是一个非常严重的问题,随着移动支付越来越流行,这个问题只会越来越严重。Feedzai就是一家利用大数据来监测以及实时阻止诈骗的公司。
公司将机器学习技术和行为分析相结合,而不是单纯地使用基于规则的标准化诈骗监测。这种大数据的挖掘和使用就可以创造出一款新的追踪分析消费者购买行为的软件。这样的话当事态出现异常时,Feedzai就可以进行监测并且立刻发出警告。
5. Spotify
起初,提供音乐流媒体服务的Spotify可以让你以固定的订阅费听音乐,按照你自己的需求播放,并且还没有广告。Spotify依赖用量算法来将用户与其喜爱的音乐相连接。但是不幸的是,结果并不像公司预想的那样对用户有很大的帮助。
2014年初,公司收购了初创公司Echo Nest,这家公司主要是开发音乐选择的人工智能。新的人工智能取决于50多个因素,再加上用户选择的大量数据,能够提供非常有用的建议。最近,Spotify利用大数据来试图囊括更多的方面,比如说Facebook动态更新和天气通知。
6. PlaceIQ
虽然说从消费者的角度来看是有点奇怪,PlaceIQ是市场营销人员的一个梦想。网站浏览器上的cookies可以使市场营销人员理解消费者网上的行为踪迹,同样地,PlaceIQ使用地理位置追踪数据来告诉公司现实生活中消费者所在的地点。PlaceIQ还与人口数据相结合来帮助市场营销人员理解人们对于广告以及其他一些因素的反应,使其最大化媒体购买和其他活动支出。
7. Beyond Sports
Beyond Sports是一家荷兰公司,它的虚拟现实模拟器可以在现实世界比赛数据的基础之上创造足球训练项目。这项可获得数据的创新性利用可以使运动员在训练时,除了以他自己的表现作为参照,还可以以他想模仿的著名明星运动员的表现作为参照。当下,公司正在打算将这个技术应用到足球、自行车、曲棍球和冰球,这就意味着光看电影录像来学习比赛即将成为过去。
在接下来的几年当中,那些能够有效利用大数据的初创公司就会盈利。通过使用诸如 import.io、Google Analytics和Mixpanel等工具,公司企业可以处理数据以取得竞争性的利益。一旦错失那些可获得的数据分析以及多种类型检测的洞察力,这些都将会成为企业所不能承受的错误。
这些初创公司都在运用大数据进行博弈。我们可以学习它们的数据科学应用来获取更大的企业利润。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22