京公网安备 11010802034615号
经营许可证编号:京B2-20210330
七家利用大数据博弈的初创公司
大数据业务有着非常光明的未来,2015年第一季度的1020笔交易创造了134亿美元的融资,成为继2000年以来的大数据融资之最。
想知道是谁引领了这股借贷狂潮吗?以下是利用大数据做业务的七家初创公司。一些公司自身利用大数据进行创新,还有一些公司的工作就是致力于使他人可获得大数据。不管是哪种,你都应该看看这些“游戏玩家”是如何利用大数据的。
1. Uber
现在很多人都听说过租车初创公司Uber,如今它已经风靡很多大型城市。但是有一点你可能不知道,那就是Uber以其在大数据方面的出色运用来达到优化、现代化、合理化业务运营的目的。
通过数据分析,Uber能够预测出客户的目的地,能够更有效地分配司机。而另一个有趣的例子就是:公司利用最近分析显示的数据来使得司机待在同一个地方就能收益最大化,甚至不需要开着车转来转去寻找潜在客户。
最后,Uber还利用数据来实施动态的高峰期定价,鼓励司机在出行用车需求高的时候多工作。
2. Foursquare
最近Foursquare重新宣布他们将使用数据挖掘技术来介绍一些用户喜欢的餐厅、景点或者购物中心。公司运用了社交网络分析之后不仅能够分析个体用户的喜好,还能知道他们何时与何人在一起。
所以,公司就能够为用户进行推荐以期望引导潮流。再加上其他的一些机器学习技术,Foursquare能够为消费者做出一些相关的建议,引导他们参与到当地的商业中去。
3. Zapier
近来,要使App之间相互交流已成为一个网上业务的主要挑战,但是Zapier就很好地解决了这个问题。它通过一个基于其他App上的触发器使用户创建Zaps。想要在Slack里收到你的Google邮件吗?想要从Evernote里将事件记录到Google邮件里吗?这些Zapier的zap都可以帮你解决。
Zapier通过使用用户的定性数据来决定下一个加入到系统之中的App,使其在满足用户更新方面的需求有求必应。
4. Feedzai
信用卡诈骗是一个非常严重的问题,随着移动支付越来越流行,这个问题只会越来越严重。Feedzai就是一家利用大数据来监测以及实时阻止诈骗的公司。
公司将机器学习技术和行为分析相结合,而不是单纯地使用基于规则的标准化诈骗监测。这种大数据的挖掘和使用就可以创造出一款新的追踪分析消费者购买行为的软件。这样的话当事态出现异常时,Feedzai就可以进行监测并且立刻发出警告。
5. Spotify
起初,提供音乐流媒体服务的Spotify可以让你以固定的订阅费听音乐,按照你自己的需求播放,并且还没有广告。Spotify依赖用量算法来将用户与其喜爱的音乐相连接。但是不幸的是,结果并不像公司预想的那样对用户有很大的帮助。
2014年初,公司收购了初创公司Echo Nest,这家公司主要是开发音乐选择的人工智能。新的人工智能取决于50多个因素,再加上用户选择的大量数据,能够提供非常有用的建议。最近,Spotify利用大数据来试图囊括更多的方面,比如说Facebook动态更新和天气通知。
6. PlaceIQ
虽然说从消费者的角度来看是有点奇怪,PlaceIQ是市场营销人员的一个梦想。网站浏览器上的cookies可以使市场营销人员理解消费者网上的行为踪迹,同样地,PlaceIQ使用地理位置追踪数据来告诉公司现实生活中消费者所在的地点。PlaceIQ还与人口数据相结合来帮助市场营销人员理解人们对于广告以及其他一些因素的反应,使其最大化媒体购买和其他活动支出。
7. Beyond Sports
Beyond Sports是一家荷兰公司,它的虚拟现实模拟器可以在现实世界比赛数据的基础之上创造足球训练项目。这项可获得数据的创新性利用可以使运动员在训练时,除了以他自己的表现作为参照,还可以以他想模仿的著名明星运动员的表现作为参照。当下,公司正在打算将这个技术应用到足球、自行车、曲棍球和冰球,这就意味着光看电影录像来学习比赛即将成为过去。
在接下来的几年当中,那些能够有效利用大数据的初创公司就会盈利。通过使用诸如 import.io、Google Analytics和Mixpanel等工具,公司企业可以处理数据以取得竞争性的利益。一旦错失那些可获得的数据分析以及多种类型检测的洞察力,这些都将会成为企业所不能承受的错误。
这些初创公司都在运用大数据进行博弈。我们可以学习它们的数据科学应用来获取更大的企业利润。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27