
大数据成为资产,问题是你能将资产变现吗
“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率及多样化的信息资产。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些有意义的数据进行专业化处理。单个的数据并没有价值,但越来越多的数据累加,量变就会引起质变,就好像一个人的意见并不重要,但一千人、一万人的意见就比较重要,上百万的人或数据就足以掀起巨大的波澜,上亿的人或数据就足以改变一切。
换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”。只有通过“加工”,我们才能实现数据的“增值”。
数据信息消费 你Hold住?
中国数据信息消费市场规模量级巨大,且增长迅速。在网络能力的提升、居民消费升级和四化加快融合发展的背景下,新技术、新产品、新内容、新服务、新业态不断激发出新的数据消费需求,而作为提升信息消费体验的重要手段,大数据在电信、智慧城市、电子商务及社交娱乐等领域获得了广泛应用。
扪心自问,大数据消费市场,你沾上了几个?
审时度势:大数据
为什么说中国数据信息消费市场规模巨大,究其根本是大数据正在重构很多传统行业,它通过收集、整理生活中方方面面的数据,并对其进行分析挖掘,进而从中获得有价值信息,最终衍化出新的商业模式。商业模式的改变直接影响了整条产业链中各个环节的数据信息,更何况这种改变还在不停的延续和创新。
我们有理由相信,大数据正在以几何倍增式暴涨,不仅数据类型千变万化,数据总量更是大的惊人,而数据资源化将是企业最有价值的资产,随着大数据与传统行业的不断融合,行业定制化解决方案也即将涌现。
中国发展大数据 得天独厚
独特的优势和经济社会高速稳定发展,给大数据及其应用带来了巨大的发展空间,与此同时,大数据的核心技术进展和大数据应用也有助于“互联网+”新型战略性产业发展的新机遇。尤其是政府报告中对“互联网+”的认可与关注,足以证明。
阿里巴巴集团创始人马云:我们看到无数企业在追逐、发现和参与大数据时代,而“观念”转型升级才是成功地起点,不懂技术的人可以把懂的人请来,因为数字的鸿沟不在于技术,而在于“思想观念”,观念的鸿沟才是真正的鸿沟,转型升级就是要把脑袋升级,脑袋升级经济才能真正升级。
针对企业大数据转型,首先需要从战略上认识,信息科技如何能使企业从全球的大数据中收益;其次,企业需要评估自己在技术、流程管理、数据分析、连接能力以及信息安全上的现有优势和劣势,并实施优化。然而,更为重要的是,企业必须在企业文化以及管理模式和流程上实施变革,以最大限度的发挥大数据的价值。
大数据不仅需要企业内部各部门(比如市场、人力资源、金融、生产、销售等)开展紧密协作,也需要企业与其产业链上的其他合作伙伴之间进行数据信息互换和分享。
对于大数据的认知和管理,很多中、大型企业基本处于一种无方管理、无胆分享、无控安全的尴尬处境,这导致了大数据价值不能被充分挖掘。
你想有隐私 但是……
大数据时代,想屏蔽外部数据商挖掘私有信息是不可能的。当下,各种智能终端的App应用均不同程度地开放其用户所产生的实时数据,同时被一些数据提供商收集,还出现了一些监测数据的市场分析机构。
通过我们所写入的信息、智能终端显示的位置信息等多种数据组合,已经可以以非常高的精度锁定个人,并挖出隐私信息体系,其安全问题堪忧。
据有关统计,通过分析用户4个曾经到过的位置点,就可以识别出95%的用户。
“面对大数据,你或许,不再有隐私。”
你想挖掘价值 但是……
大数据对数据信息获取渠道拓宽的需求,引发了另一个重要问题:安全、隐私和便利性之间的冲突。我们受惠于海量数据:更低的价格、更符合消费者需要的商品、以及从改善健康状况到提高社会互动顺畅度等生活质量的提高。但同时,随着用户偏好、健康和财务情况的海量数据被收集,我们对隐私的担忧也在增大。记得“棱镜门”事件爆发后,尴尬的奥巴马辩解道:“你不能在拥有100%安全的情况下,同时拥有100%隐私和100%便利。”
坚定!中国政府明确的大数据态度
难道安全和隐私不可兼得吗?回顾2014年下旬,国务院出台《关于加快发展生产性服务业、促进产业结构调整升级的指导意见》曾三次明确指出,
我们要“推动云计算、大数据、物联网等在生产性服务业的应用,鼓励企业开展科技创新、产品创新、管理创新、物联网等在生产性服务业的应用,鼓励企业开展科技创新、产品创新、管理创新、市场创新和商业模式创新,发展新兴生产性服务业态”。
我们要“运用互联网、大数据等信息技术,积极发展定制生产,满足多样化、个性化消费需求”。
我们要“完善产品三包制度,推动发展产品配送、安装调试、以旧换新等售后服务,积极运用互联网、物联网、大数据等信息技术,发展远程监测诊断、运营维护、技术支持等售后服务新业态”。
三个“我们要”,足以表明国家对于推动云计算、大数据、物联网的决心与态度。
大数据安全是一场必要的斗争
大数据来袭,企业不仅要学习如何挖掘数据价值,使其价值最大化,还要统筹安全部署,考虑如何应对网络攻击、数据泄露等安全风险,并且建立相关预案。
当企业用数据挖掘和数据分析获取商业价值的时候,黑客也可以利用大数据分析向企业发起攻击。黑客最大限度地收集更多有用信息,比如社交、邮件、微博、电子商务、电话和住址等,为发起攻击做准备。尤其当你的VPN账号被黑客获取时,黑客就可以获取你在单位的工作信息,进而入侵企业网络。由此可说,大数据分析让黑客的攻击更精准。
在大数据时代巨大商业价值背后,隐私安全问题更令人担忧。随着产生、存储、分析的数据量越来越大,隐私问题在未来的几年也将愈加凸显。
然而,大数据安全是跟大数据业务相对应的,传统时代的安全防护思路此时难以起效,并且成本过高。与传统安全相比,大数据安全的最大区别是:安全厂商在思考安全问题的时候首先要进行业务分析,并且找出针对大数据的业务的威胁,然后提出有针对性的解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13