京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据推动军事思维更新
随着信息技术的快速发展,大数据作为一个崭新的技术手段和思维方式,广泛用于国防和军队建设领域,正在对军事思维产生较大的影响。
大数据促使作战筹划方式更新。与人们过去的思维方式不同,大数据强调分析与某事物相关的总体数据,而不是抽取少量的数据样本;大数据关注事物的混杂性,而不追求事物的精确性;大数据注重事物的相关关系,而不探求之间的因果关系。过去,由于可以掌握的数据不足,战争的不确定性很高,指挥员很容易陷在“战争迷雾”之中。而大数据时代不要求准确知道每一个精确的数据,只需了解事物的概略全貌即可。通过相关数据信息的大量积累,而不是某个具体数据的精确分析,从中提炼出事物运行的规律,判断其发展趋势,为作战行动提供便利。例如,2011年美军击毙本·拉登的“海神之矛”行动背后,就是上千名数据分析员长达十年的数据积累。换言之,是大数据抓住了本·拉登。
大数据引领指挥决策方式变革。在战争中,数据组成了战争中的一切要素,大数据的出现必将要求以全新的数据思维辅助指挥决策。指挥员作指挥决策,越来越取决于大量的数据资源,而非经验和直觉的“拍脑门”。只要掌握的作战数据足够庞大和真实,通过深入的数据挖掘,就可以比较准确地得出敌方指挥员的思维规律,预测对手的作战行动,判断战场态势的发展变化。同时,大数据所提供的高速计算能力,也有助于指挥员更加精确而迅速地设计作战行动方案。因此,可以预见,基于数据的定量决策将和基于经验的定性决策同样重要,基于大数据的决策手段将从辅助决策的次要地位上升到支撑决策的重要地位。例如,美国发布的《2013—2017年国防部科学技术投资优先项目》中,就将“从数据到决策”项目排在第一位,凸显了大数据对其指挥决策方式的巨大影响。
大数据带来新的军事安全隐患。在国防和军队建设领域,大数据技术竞争日趋激烈,数字主权和数据安全的重要性急剧上升,为军事信息安全带来新的挑战。随着数据量的爆炸性增长,一方面,数据库漏洞越来越多,可供攻击的目标随之增加,另一方面,隐藏在海量数据中的攻击行为往往难以被及时发现,核心数据的泄露将对国防和军队建设造成致命性影响。例如,“棱镜门”事件引爆的“大数据暴政”,就是最好的体现。在“棱镜”背后隐藏着一个庞大的“监视帝国”,对我国的军事信息安全带来更大的压力。军事信息安全领域,正在成为继边防、海防、空防、太空之后又一个大国博弈的新型空间。
大数据在军队建设中更加重要。新中国成立以来,我国的国防和军队建设先后经历了零散数据、纸质数据、小规模数据再到目前的大数据等几个不同的发展阶段,数据在其中发挥的作用越来越大。未来一个时期,应当高度关注大数据技术手段和思维方式的发展变化,不断完善国防和军队建设数据的安全体系,统筹考虑大数据军事运用的战略需求,融入国防和军队信息化建设战略布局和发展规划。特别是加强信息资源开发利用与信息技术自主创新的力度,增强国防和军队建设、战史战例、行动样式、敌情状况、战场环境等大数据研发的支持。积极引导大数据发展方向,充分利用大数据的研究和建设契机,推动我国国防和军队信息化建设向更高层次迈进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10