
大数据推动军事思维更新
随着信息技术的快速发展,大数据作为一个崭新的技术手段和思维方式,广泛用于国防和军队建设领域,正在对军事思维产生较大的影响。
大数据促使作战筹划方式更新。与人们过去的思维方式不同,大数据强调分析与某事物相关的总体数据,而不是抽取少量的数据样本;大数据关注事物的混杂性,而不追求事物的精确性;大数据注重事物的相关关系,而不探求之间的因果关系。过去,由于可以掌握的数据不足,战争的不确定性很高,指挥员很容易陷在“战争迷雾”之中。而大数据时代不要求准确知道每一个精确的数据,只需了解事物的概略全貌即可。通过相关数据信息的大量积累,而不是某个具体数据的精确分析,从中提炼出事物运行的规律,判断其发展趋势,为作战行动提供便利。例如,2011年美军击毙本·拉登的“海神之矛”行动背后,就是上千名数据分析员长达十年的数据积累。换言之,是大数据抓住了本·拉登。
大数据引领指挥决策方式变革。在战争中,数据组成了战争中的一切要素,大数据的出现必将要求以全新的数据思维辅助指挥决策。指挥员作指挥决策,越来越取决于大量的数据资源,而非经验和直觉的“拍脑门”。只要掌握的作战数据足够庞大和真实,通过深入的数据挖掘,就可以比较准确地得出敌方指挥员的思维规律,预测对手的作战行动,判断战场态势的发展变化。同时,大数据所提供的高速计算能力,也有助于指挥员更加精确而迅速地设计作战行动方案。因此,可以预见,基于数据的定量决策将和基于经验的定性决策同样重要,基于大数据的决策手段将从辅助决策的次要地位上升到支撑决策的重要地位。例如,美国发布的《2013—2017年国防部科学技术投资优先项目》中,就将“从数据到决策”项目排在第一位,凸显了大数据对其指挥决策方式的巨大影响。
大数据带来新的军事安全隐患。在国防和军队建设领域,大数据技术竞争日趋激烈,数字主权和数据安全的重要性急剧上升,为军事信息安全带来新的挑战。随着数据量的爆炸性增长,一方面,数据库漏洞越来越多,可供攻击的目标随之增加,另一方面,隐藏在海量数据中的攻击行为往往难以被及时发现,核心数据的泄露将对国防和军队建设造成致命性影响。例如,“棱镜门”事件引爆的“大数据暴政”,就是最好的体现。在“棱镜”背后隐藏着一个庞大的“监视帝国”,对我国的军事信息安全带来更大的压力。军事信息安全领域,正在成为继边防、海防、空防、太空之后又一个大国博弈的新型空间。
大数据在军队建设中更加重要。新中国成立以来,我国的国防和军队建设先后经历了零散数据、纸质数据、小规模数据再到目前的大数据等几个不同的发展阶段,数据在其中发挥的作用越来越大。未来一个时期,应当高度关注大数据技术手段和思维方式的发展变化,不断完善国防和军队建设数据的安全体系,统筹考虑大数据军事运用的战略需求,融入国防和军队信息化建设战略布局和发展规划。特别是加强信息资源开发利用与信息技术自主创新的力度,增强国防和军队建设、战史战例、行动样式、敌情状况、战场环境等大数据研发的支持。积极引导大数据发展方向,充分利用大数据的研究和建设契机,推动我国国防和军队信息化建设向更高层次迈进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08