京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据还能告诉我们什么
世界的一切关系都能用数据来表征。早在古希腊的哲学家毕达哥拉斯就提出了“数是万物的本原”的思想。如今,大数据技术正在重塑我们这个世界,拥抱大数据已成为席卷全球的大行动。
美国的《大数据研究和发展计划》,欧盟的《数据价值链战略计划》,英国的《英国数据能力发展战略规划》,以及日本的《创建最尖端IT国家宣言》等都将大数据 研究和生产计划提高到国家战略层面。近日,我国也印发了《促进大数据发展行动纲要》,显示出我们决战大数据时代的信心和决心。
概括来讲,大数据有以下四个特点:第一,数据体量巨大。可以称之为海量或天量;第二,数据类型繁多。涉及到人类生活方方面面所产生的数据源;第三,处理速度快。瞬间可从各类数据中快速获得高价值的信息;第四,数据动态变化。不断有新数据增加,采用合理的数据模型和分析处理方法,将会带来很高的经济和社会效 益。
大数据与云计算密不可分。大数据技术的战略意义不在于掌握庞大的数据信息,而在于掌握对这些含有意义的数据进行专业化处理的技术。大数据需要结合新的处理模式才能产生具有更强的决策力、流程优化能力等多样化的信息资产,即通过对海量数据的加工,快速获得有价值的信息,为管理决策 和生产生活服务。
大数据已成为国家竞争力的一部分。在国家治理层面,大数据可以实现科学决策,推动政府管理理念和社会治理模式进步,逐步实现政府治理能力现代化;在经济发展层面,大数据可以深刻影响社会分工协作的组织模式,促进生产组织方式的集约和创新。
另外,大数据在国家安全层面也将发挥巨大的作用。在外交、国防、军事和反恐等方面,发掘和释放数据资源的潜在价值,能有效解决情报、监视和侦察系统不足等问 题,可以更好地维护国家安全,有效提升国家竞争力,增强国家安全保障能力。当然,大数据如果防范和保护措施不得力,也会让敌对势力利用,成为国家安全的潜 在风险。
我国有庞大的人口和应用市场,复杂度高、变化多端,使得我国成为世界上最复杂的大数据国家。大数据的应用和影响,不仅体现在国家和社会发展的宏观方面,也将体现在我们日常生活的诸多细微之处。
前不久,伦敦帝国理工学院数据科学研究所向彭丽媛女士赠送了一件苏格兰羊绒披肩,其尺寸来自于大数据分析。该研究所采用彭丽媛公开照片,通过计算机图像分析技术,计算出了彭丽媛的衣服尺寸而制成。相信在不久的将来,大数据的个性化服务将不再是个例,至少会在以下几个方面普遍服务于每个人的成长和生活。
一是日常生活大数据。无论衣食住行,还是理财购物,未来大数据技术都会给我们的日常消费莫大的便利和帮助。当我们的日常行为习惯,以数据方式记录和积累后, 大数据分析会告诉我们,我该穿什么样的衣物最合身,我该坐什么交通工具最便捷,我该如何理财才能做到高回报低风险,我该怎样购物才能获得最佳性价比。借助 大数据技术,营销机构能为特定消费者提供针对性服务,生产企业也能够针对特定消费者提供更多的定制化产品。
二是生命健康大数据。人体每时每刻的体温、心率、血压、血相等生理数据,是一类非常值得分析的大数据。随着“可穿戴设备”技术的不断发展,将来会有越来越丰富的健康监测终端实时 收集人体生理数据,自动传入云端,进行数据分析与处理,再将其结果发给医生。医生将根据大数据的处理结果给出诊断或康复建议。利用大数据和医疗定量分析技 术,未来越来越多的普通百姓可以接受远程健康监督、营养指导、慢性病管理以及康复治疗等服务。
三是智慧学习大数据。当学习过程能够 跟踪,知识体系可以解构,文化水平可以量化时,文化教育类大数据无疑会成为值得挖掘的金矿之一。丰富的学习终端,将会更多地融入文化资源云平台,根据每个 人的兴趣爱好、知识结构和发展进程,大数据能及时提醒我们改进学习方法,能推送需要的知识单元,还可以提供适宜的文化资源。借助大数据,我们将能接受量体裁衣的终身学习,也能享受到丰富多彩的精神生活。
拥抱大数据,共赢新时代。“个人智库”“随身智库”终将梦想成真,信息技术的发展会给我们带来更美好的未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27