京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅析零售业大数据构成要素
马云说人类社会已经从IT(信息技术)时代进入DT(数据技术)时代,《大数据时代》一书的大卖也昭示了大数据的重要性。各个行业都在研究大数据对自己行业的变革,作为精益零售研究工作者,我也来浅析一下零售业的大数据构成要素。
一、大数据的对象包括企业内部信息与外部信息
外部信息主要指的是市场信息、流行趋势、厂商信息、消费结构的变化、政策与制度改变、新商品新技术的革新等;
内部信息主要指的是POS信息、商品销售动向、顾客信息、竞争对手信息、公司的方针与指示、门店所在楼盘相关信息、销售额与利润的分析、门店周边商圈分析等。
二、大数据使用者应该普及到所有基层员工
大数据不只是给企业高层经营分析用的,而是要普及到公司所有一线员工,包括订货、配货、采购、物流、人事、财务等所有的基层员工,他们在做业务决策时如何通过大数据提高预测的准确性。
三、大数据应该是业务过程分析而不是财务结果分析
企业目前使用的BI系统大多是面向财务结果的分析系统,主要是企业高层分析财务指标用的,而大数据应该是面向业务过程分析,即贯穿于企业各职能部门的业务主线,在日常工作中就要活用大数据,如商品部与营运部每天都要分析商品构成评价、商品动向分析、ABC分析、趋势分析、矩阵分析、商品动向的地区间对比分析、滞销商品分析、新品与重点商品的销售分析等等。通过每日分析就能及时发现问题所在,迅速调整经营决策。
四、大数据更强调的是业务模型而非技术本身
目前国内BI(一般称为商业智能)系统应用好的企业远低于ERP的应用,原因并非BI技术架构的问题,而是业务模型不知道如何建立,业务部门也很难说清楚他们要什么样的报表才是业务最优的报表,而IT技术构建者是很难理解业务模型的。对比日本与中国BI分析系统的特点,中国企业的领导者喜欢看类似于仪表盘、驾驶舱的很炫的界面,最好还要有智能报警器,而日本企业只看二维的数据表格,数据很枯燥,但却很实用。
五、日本广泛在用的零售业大数据分析系统
日本零售业到底在用什么样的大数据分析系统?最核心的有三点:1、一定要有销售计划或预算系统:通过预算的销售额、毛利、折扣率、来客数与实际结果的对比,找出差异并分析原因,从而修正下一次计划,日益精进,最终目的是提高计划的精确性,从而在商品开发、生产、物流配送时就能精确地分配资源,不浪费,这也是精益零售的核心;2、一定是定型分析而非自由分析:中国的BI系统强调工具的灵活性与强大,可以让企业自由拖拽,其结果分导致各业务部门拉出来的数据差异较大,无法形成统一的数据语言,而日本BI系统强调的是定型分析,将各业务部门要分析的报表固定成统一的报表格式,这样每周开经营分析会议时各业务部门的数据就完全统一了;3、非结构化数据比结构化数据重要:结构化数据指的是ERP系统中能看到的信息,而非结构化数据来自于员工每一次假设-验证后形成的经验信息,相当于是员工经常试错后的日志记录,这样的日志一定要记入系统,等来年同比时作为重要的参考信息,举例来说,在做周同比分析时,某门店附近学校运动会去年与今年的春季运动会并不在同一周举行,则同比分析时就要找出举办运动会的不同周数去对比。这个现象也能解释一个问题:为什么一家优秀的门店店长去了别的门店当店长后,业绩不升反降,原因是这个优秀的店长不了解新门店的过去的试错经验,也就是说门店的知识沉淀工作不充分,知识都被原来的店长记在大脑里带走了,没有沉淀到IT系统中去。而市面上常见的KM知识管理系统流于形式变成OA办公系统了,最好的做法是把日志信息记录到POS系统里面,作为门店的知识管理系统。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27