京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Michael Stonebraker,数据库领域的布道者,著名的数据库科学家,美国工程院院士,冯诺依曼奖的获得者,第一届SIGMOD Edgar F. Codd创新奖的得主,曾担任Informix CTO。他在1992年提出对象关系数据库模型,在加州伯克利分校任计算机教授达25年,更是众多数据库公司的创始人之一,其中包括Ingres、Illustra、Cohera、StreamBase Systems和Vertica等,目前是麻省理工学院教授,所参与的项目包括:Aurora,C-Store,H-Store,Morpheus,以及SciDB系统等。
Stonebraker是SQL Server/Sysbase奠基人,87年左右,Sybase联合了微软,共同开发SQL Server。原始代码的来源与Ingres有些渊源。后来1994年,两家公司合作终止。此时,两家公司都拥有一套完全相同的SQLServer代码。也可以认为,Stonebraker教授是目前主流数据库的奠基人。
2014年12月12-14日北京召开的2014中国大数据技术大会(暨第二届CCF大数据学术会议)正在邀请数据库领域的布道者Michael Stonebraker,希望能有机会带大家领略大数据时代数据库领域的最前沿思想。
数据库领域的布道者Michael Stonebraker
2012年,他发现一个有趣的现象:相当一部分计算机学团体已重新制定了其研究课题,并加盟到了“大数据”大旗麾下,发觉大数据已然成为最时髦的术语。他结合自己在数据库(根据定义,数据库就是处理大数据的)领域侵淫多年,特撰写了四篇博文来解释他对“大数据”的理解。
他对大数据有如下四种含义:
大数据量、“小分析学”。此处的目标是对极大量的数据集使用SQL。对大数据集,没有人会用“Select *”来查询因为其返回太子节(terabyte)的数据使接收者无法应付。替代方案,则是对海量数据把注意力放在SQL的分析功能上,如count、sum、max、min、avg等,可辅之以group_by。我将此称作“小分析学”,以便把这个用例(use case)区别于下面的场合。
对大量数据使用大分析学。“大分析学”在此的含义是:对海量数据施用数据聚类(clustering)、回归分析、机器学习、以及其他更为复杂的分析手段。目前,用户倾向于采用统计学软件包如R、SPSS、SAS等来实现。其他方案是使用线性代数软件包,例如:ScalaPack或Arpack。最后,也有大量自行开发的代码在使用中。
大速度。其含义是:对电子交易、实时网页广告投放、实时客户针对营销、移动社交网络等应用,能够吸收并处理“灭火水龙带”式的数据涌入。此用例在大型网站公司和华尔街盛行,二者都倾向于自行开发。
大多样性。许多企业面临整合日益扩大的多种数据源,而数据格式千差万别,例如:电子表格、网页、XML、传统的关系型数据库等。许多企业认为这是最头疼的问题。从历史上来说,萃取、转置、加载(ETL)供应商在此市场上对有限的数据源曾提供服务。
他第一篇博文中专门讨论了大量数据的小分析学,尔后的三篇博文将运用实例论及其他三点,感兴趣的可以到Stonebraker的博客查看。(原文链接: 一、 二、 三、 四)
去年底,Stonebraker还参加了一期 Structure Show,谈论自己对数据库市场的观点,包括NoSQL和Oracle的未来,当然还有Facebook的MySQL问题。若使用或研究数据库技术的人想听整个访谈,请点击 这里。以下是一些精华摘要:
1. 单一模式不能包打天下:“任何我可以想到的垂直市场,相比传统的关系型数据库系统,总会有一些更合适的解决方案。”Stonebraker 如是说。事实上,这是他一贯的主张。但今时今日这一主张看起来更有说服力了。现在有用于数据分析的列存储架构,用于交易的内存架构,当然也有用于简单的键值操作及新数据类型的NoSQL架构。甚至图形数据库都开始步入商用。
2. 数据库领域可以有很多赢家:“将有3到5个,甚至6个非常不同的数据库系统架构成为赢家,而在每一类下都会有2到3个成功的供应商。”Stonebraker预测:“我的核心观点是,传统的关系型数据库系统将慢慢收缩,这一切转变也许需要十年。”
3. NoSQL会被广泛接受:“我的预测是NoSQL将意味着不止SQL。”Stonebraker说,“Cassandra和MongoDB已经宣布了类似这样的东西,如果你放下你的偏见,那么这种高级语言基本上就是SQL。”人们已经不那么看好单纯的底层语言的价值。Stonebraker认为NoSQL系统将来也要拥抱ACID。而这一切可能正在发生。
4. Oracle将感受到来自SAP的压力:“我觉得另一个非常有趣的事是SAP在数据库领域还没有得到很多关注,现在SAP的客户同时也是Oracle最大的客户。”Stonebraker说:“在这些巨头中,Oracle和SAP会好好地干上一架。”
现在说这个可能有点早了,我们也不知道SAP的客户将如何回应切换数据库的游说。不过Stonebraker补充说:“我的预期是,SAP会给客户一个信服的理由,让他们从Oracle迁移到HANA。”
5. Facebook会继续寻找MySQL的替代品,不过可能劳而无功:“Facebook面对的是这个星球上最难的数据管理问题之一。”Stonebraker说。“他们花了数年的时间尝试从MySQL迁移到别的系统,但是到目前为止还没有发现可以匹配他们规模的替代品。”
相比几年前的观点,Stonebraker现在的主张已经有所缓和。可能这是因为Facebook分享了他们在MySQL上做的一些努力,包括为了维持MySQL系统的运行所作的精妙的配置。然而这一缓和,与其说是对MySQL的支持,不如说是对Facebook的数据库改造的认同。
最后,Stonebraker的总结一如既往的幽默:“传统的数据库销售商提供的产品,它们的代码基础和25年前一样,现在正让它们退休的时候了。(文章来自:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15