
本次大会虽然只有短短一天,但是却以更加国际化的视野,帮助与会者了解全球大数据技术的发展趋势;从行业应用出发,探讨大数据领域的实践经验,深度剖析大数据的核心技术。
eBay总经理,eBay China Center of Excellence田卫做了开场致辞,在感谢各位来宾的同时,对1500位报名但由于场地限制,未能来参会的朋友们也表示了歉意。大数据以迅雷不及掩耳之势,迅速的扩展到金融、娱乐、工作和生活中来。以打桥牌的经历为例,她介绍了自己如何通过一个”小数据“实现了价值。”打桥牌,不仅牌要打得好,还要运气好,失误少。我将大数据技术融入到桥牌中来,通过对大量数据的积累与分析,最终以新人身份冲入第14届世界桥牌竞标赛。这足以说明数据分析的魅力。未来,eBay会开源几个大数据平台工具,将顶尖的大数据技术分享给世界。”
eBay全球数据架构副总裁Debashis Saha则发表了题为“大数据基础架构的未来”的演讲。如今有五分之一的美元是花费在网上,eBay已经不仅仅是一家连接买家和卖家的电子商务公司。eBay目前有1.28亿的活跃用户,Paypal有1.43亿活跃账户,200PB以上的数据。几年前,Hadoop的出现为这些大数据的处理提供了可能。Debashis首先介绍了eBay如何在Hadoop的基础上,扩展平台和工具,来适应大数据商业的需求,在eBay的生态系统中,分为三层:Infrastructure,Platform和Services。接下来,Debashis介绍了eBay在深度数据分析和快速、实时分析方面所做的工作,包括对开源社区的贡献。
国立台湾大学卓越教授林智仁,作为作为机器学习的研究者,带来了“大规模分布式机器学习”的分享。分布式机器学习还在很初期的阶段,其带来的最大挑战是:以前在一台机器上的算法、工具等都已经基本失效,要考虑算法、系统和应用等各个方面,但也有人说大量的数据中能够更容易挖掘出有效数据。从技术角度来说,分布式机器学习的优点是:1.可实现并行数据加载,提高加载效率;2.容错机制。但分布式机器学习也有缺点:深度分析使流程更加复杂。如果真的要采用分布式机器学习,就要考虑数据的计算时间,加载时间和同步时间,而在过去的机器学习中,大部分场景中却只考虑了计算时间。最后,林智仁介绍了几个分布式机器学习的算法及其应用场景,比如Logistic Regression问题的分布式实现,Google的Sibyl系统,并以用户的CTR预测应用场景进行了说明。
Druid创始人Eric Tschetter接下来发表演讲“Druid之旅,大数据实时分析数据存储框架”的演讲。Eric以一个Demo开场介绍了Druid。Druid是一个开源的、实时处理数据库,主要用于数据量较大、多维度数据的场景,满足不宕机的数据分析需求,在Druid之前,他们尝试过RDBMS(加载速度过慢)、NoSQL存储(随着维度的增加,效率降低),由于各种缺陷开始了Druid的开发。Druid将历史数据和实时数据分开,Realtime Nodes、Historical Nodes,还有Broker Nodes,再将两者进行合并处理。接下来Eric详细介绍了Druid的数据存储形式和处理方式。
eBay全球平台架构资深架构师Sami Ben-romdhane详细介绍了“Eagle:Hadoop平台监控、预警及自动化”的实践经验。eBay的Hadoop平台团队,包括9位中国工程师和11位美国工程师,Eagle完全由中国的团队开发。eBay的Hadoop节点从2007年的几个,发展到2014年的10000个,Hadoop集群的管理成为难点,Eagle应运而生。Eagle的应用场景包括监控M/R作业,作业性能的分析,服务器异常检测,管理SLA作业,监控节点审计日志,监控HDFS镜像,监控进程GC日志等。Eagle的主要组件包括Eagle Data Feeder,Eagle Logstash Integration,Eagle Data Storage,Eagle Query Service,Eagle Anomaly Detection,Sami分别对其做了详细解说,并介绍了Eagle完全由中国团队开发完成。
EV Analysis Corporation首席数据科学家Ying Li则分享了数据科学的实践。Ying Li首先介绍了数据科学的定义和自己多年积累的实践原则:Question,用问题指引工作;Unknowns,知道你的盲点;Explore,从不同角度看数据;Scrupulous vs. Speed, Science vs. Scrappiness;Truth,数据和现实的关联。认为数据科学的一个重要性质是可重复性,而评价数据科学家的一个重要指标则是其代表作。
CSDN云计算日前翻译的《Kylin正式发布:面向大数据的终极OLAP引擎方案》引发了开发者对麒麟(Kyllin)极大的兴趣。eBay资深架构师蒋旭对刚刚开源的技术Kylin——基于Hadoop的大规模联机分析引擎,进行了深入的分析。随着eBay大量数据都迁移到Hadoop上,如何读取数据?如何达到百亿数量级的数据,秒级时间内就能收到数据分析结果?而Hive又太慢了,eBay开发了Kylin来完成这个任务。对于开发者关心的“现在已经有很多SQL-on-Hadoop技术了,为什么还要重复造车轮?”这个问题,蒋旭详细分析了现有系统的问题,多数选择ROLAP的模式,数据集一大,查询延迟特别长。为此,eBay选择了MOLAP和ROLAP的混合模式,并坚持尽量使用Hadoop已有功能的原则,Kylin支持ANSI SQL查询。并能与现有商业智能工具无缝的整合,比如Tableau。 支持TB到PB级别的快速查询能力。麒麟(Kylin)是完全由中国团队研发并贡献到开源社区的产品,目前正在提交到Apache孵化器项目。
腾讯数据平台部精准推荐中心总监李勇则以“腾讯大数据平台与推荐应用架构”作为峰会的结尾。腾讯的月活跃用户8.3亿,微信月活跃用户4.4亿,QQ空间月活跃用户6.5亿,游戏月活跃用户过亿。如今腾讯的数据分析已经能做到始终“不落地”,即全部的实时处理。腾讯大数据平台有如下核心模块:TDW、TRC、TDBank、TPR和Gaia。简单来说,TDW用来做批量的离线计算,TRC负责做流式的实时计算,TPR负责精准推荐,TDBank则作为统一的数据采集入口,而底层的Gaia则负责整个集群的资源调度和管理。李勇还特别强调了数据平台体系化是应用基础,数据应用商业化是价值导向。
本次大数据峰会是一次数百名业内人士齐聚的深度技术实践之旅,通过业界顶级专家的技术分享,帮助数据分析人员、数据科学家们,走出原先的框架看看新技术新架构下的技术实践,不要总是桎梏于传统的思路和方法。同时本次大数据峰会希望可以利用专业知识和行业经验,帮着那些”求大数据若渴“的行业用户们好好定位下对他们真正有价值的新应用场景,设计更多的有意义的分布式算法和机器学习模型,真正帮助他们解决大数据应用之惑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07