
大数据在智能城市建设中如何实现价值
在有关大数据应用的讨论里面,智能城市炒得异常火热,这也是每个城市发展的一个引导方向。在大数据和智能城市发展的过程中,大数据的价值非常大,但这些大数据如果应用不好,他的价值等于是零。那么,大数据时代的智能城市到底是怎样的城市呢?大数据又在其中起到了怎样的作用?
一、城市规划
你看现在每个城市在城市规划当中,都存在有很多问题,比如说在北京,几乎都是灰尘,没有什么公司,也没有什么工厂,也没有学校,大家都到城里去,这样的规划,我们通过移动的信息,能够非常准确地把这个城市规划做好。
美国纽约也是全世界很大的城市,大数据原来在有老百姓的每一个城市,都有一个老百姓需要服务的东西。原来有40多个公司在做这个,40多个公司很大,但是解决的问题很不好,大家很不满意。就是服务的智能很差,大家提出这个311的电话,311的电话以后,他就400个人,最后服务的结果是什么?80%的老百姓的呼叫30秒就能出,这个结果是非常大的变化。就是170种语种,大概是5万多个户县,为什么能做到这一点,就是大数据的资源,没有大数据的资源,没有办法得到出来。
纽约市在数据开放方面是走在前面的,1100多份数据,你看下面这个数,这个纽约市市长,他每天在办公室,他整个纽约市的交通拥堵,哪个垃圾没人收,PM2.5都一目了然,都有这些数据。这是一个城市的数据,他利用这个数据,就可以解决很多的问题。比如说你在哪儿,他就可以预测,这些数据都可以公开利用,都可以有很大的利用价值。
二、智能交通
每个城市智能交通都是很大的问题,要解决两个问题,一个是解决交通给人们带来的安全的事故,每年因为交通事故死亡7万多人,这个矛盾我们能不能利用大数据技术来解决这个,还有拥堵的问题,能不能利用大数据来解决拥堵的问题。
现在我们的汽车有位置的不到5%的,就是大量的汽车都是自己的手机位置信息,这个移动的通信末端,司机绑定你的位置信息,从周一到周五,每个路口的进出多少辆车,都有规律的,这些大数据来指挥我们交通,这个对社会的跟进完全不一样。
我们来做一个实验,一个城市大概有多少万人,好像是500多万的这个统计。这些人晚上的位置的信息96%都知道,比较准确,白天94%都知道,这个都是很准确的。这些位置的信息是有很大的价值,也有很大的隐私。这些数据作为公共的服务,都是客观存在的。但是这些数据挖掘出来没有?应用出来没有?没有。
大家都知道车联网的数据价值很大,车联网要解决这个问题,他现在提出了咱们50毫秒、10毫秒,现在提出要3毫秒,因为这个车怎么来解决这个问题,这个要降到1毫秒一下,我们互联网是90毫秒,都还是远远超过。
三、医疗
怎么解决医疗问题,想提供一个数字给大家。美国医疗方面是很发达的他在美国有产业很大,到2020能年达20%,美国的GDP和20%是多大的量,要把医疗的大数据能够统一。把这个问题解决了以后,就能解决所有大数据的一个统一的问题。
现在预测我们国家在医疗方面到2020年,保健方面大概1万医院,我们在GDP只有5%,这个全球平均是10%,我们比全球平均水平还低,随着我们综合水平的提高,这个比例会越来越大。但这个方面,我们的这个地位医疗的一些报名的事件,我们每年增长23%,能不能通过大数据应用缓解这些矛盾,我认为是很迫切的。这是欧盟关于医疗设备成立一个大数据的一个服务公司,都在做这样的一个讨论。
在大数据里,移动医疗可能会成为我们自己的医生,将来总有一天,会变成我们医疗的医生。现在有人预测,到2015年,大概有5亿台手机会有医疗功能,但是现在大部分还很少。但是大家现在大家都在做,苹果公司都在做,就是通过手机来测血糖,或者测你哮喘的病,测医疗单子,现在这些方面,咱们都会得到一些比较普遍的应用。另外在公共安全方面,我们国家每年大概6千多亿的损失,有20多万死亡,这个损失很大。我也举一个例子,就是吉林一个县发大水,也是汶川地震时期,大家都在默哀,觉得是老天爷所为,无能为力,但是,我们如果有了天气预报,有了地理地貌这些信息,我们可以避免这些灾难的发展。
四、突发事件
在突发事情上,如果政府有采取这个措施,是可以避免的。举一个例子,北京的一个水灾,这个事故死了几十个人,北京市政府领导给我们的情况是:那是一个旅游景点,有一个河沟,一个经理看情况不好,就告诉他们,不到十几分钟以后,山洪暴发了,否则的话,就可想而知了。
如果我们有天气预报,我们都可以知道。更可怕的是北京机场有一个河,就是再下点雨,就可以倒灌到地下室,如果倒灌了以后,这个楼就宣布要倒塌,这些手段,这些技术没有人去说,这些都是不是很困难的事情,但是需要这些数据的开放。
大家可能知道南京煤气管道,一个农民工施工的时候,煤气爆炸,把农民工拘留起来,在北京我就愤愤不平,在南京讲课的时候,我跟他们说,我说你这个领导应该给他一个哪儿有管道有这个数据。他晚上请我吃饭的时候说刘院士,我真没有这个数据,说三米外有一个数据,其实不到一米的时候,这个管道就被挖出来了。这个数据有没有?有的有,有的没有,就是政府部门没有公开,这些数据不能不开放。
就像江苏省的GDP,又是沿海的,这么发达的城市,这些数据都没有,你就比较危险。所以我们的大数据喊的那么厉害,却没有落实到实处,我的意见就是赶紧找找你的问题,看看那能不能用大数据去解决。否则讲了半天,他的价值,就没有体现。我们说的净化,但是他跟环境的一样,这些数据在那儿摆着,你跟你的问题结合起来,他才能发挥他的价值。这些灾害方面,需要大数据的平台。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09