京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在智能城市建设中如何实现价值
在有关大数据应用的讨论里面,智能城市炒得异常火热,这也是每个城市发展的一个引导方向。在大数据和智能城市发展的过程中,大数据的价值非常大,但这些大数据如果应用不好,他的价值等于是零。那么,大数据时代的智能城市到底是怎样的城市呢?大数据又在其中起到了怎样的作用?
一、城市规划
你看现在每个城市在城市规划当中,都存在有很多问题,比如说在北京,几乎都是灰尘,没有什么公司,也没有什么工厂,也没有学校,大家都到城里去,这样的规划,我们通过移动的信息,能够非常准确地把这个城市规划做好。
美国纽约也是全世界很大的城市,大数据原来在有老百姓的每一个城市,都有一个老百姓需要服务的东西。原来有40多个公司在做这个,40多个公司很大,但是解决的问题很不好,大家很不满意。就是服务的智能很差,大家提出这个311的电话,311的电话以后,他就400个人,最后服务的结果是什么?80%的老百姓的呼叫30秒就能出,这个结果是非常大的变化。就是170种语种,大概是5万多个户县,为什么能做到这一点,就是大数据的资源,没有大数据的资源,没有办法得到出来。
纽约市在数据开放方面是走在前面的,1100多份数据,你看下面这个数,这个纽约市市长,他每天在办公室,他整个纽约市的交通拥堵,哪个垃圾没人收,PM2.5都一目了然,都有这些数据。这是一个城市的数据,他利用这个数据,就可以解决很多的问题。比如说你在哪儿,他就可以预测,这些数据都可以公开利用,都可以有很大的利用价值。
二、智能交通
每个城市智能交通都是很大的问题,要解决两个问题,一个是解决交通给人们带来的安全的事故,每年因为交通事故死亡7万多人,这个矛盾我们能不能利用大数据技术来解决这个,还有拥堵的问题,能不能利用大数据来解决拥堵的问题。
现在我们的汽车有位置的不到5%的,就是大量的汽车都是自己的手机位置信息,这个移动的通信末端,司机绑定你的位置信息,从周一到周五,每个路口的进出多少辆车,都有规律的,这些大数据来指挥我们交通,这个对社会的跟进完全不一样。
我们来做一个实验,一个城市大概有多少万人,好像是500多万的这个统计。这些人晚上的位置的信息96%都知道,比较准确,白天94%都知道,这个都是很准确的。这些位置的信息是有很大的价值,也有很大的隐私。这些数据作为公共的服务,都是客观存在的。但是这些数据挖掘出来没有?应用出来没有?没有。
大家都知道车联网的数据价值很大,车联网要解决这个问题,他现在提出了咱们50毫秒、10毫秒,现在提出要3毫秒,因为这个车怎么来解决这个问题,这个要降到1毫秒一下,我们互联网是90毫秒,都还是远远超过。
三、医疗
怎么解决医疗问题,想提供一个数字给大家。美国医疗方面是很发达的他在美国有产业很大,到2020能年达20%,美国的GDP和20%是多大的量,要把医疗的大数据能够统一。把这个问题解决了以后,就能解决所有大数据的一个统一的问题。
现在预测我们国家在医疗方面到2020年,保健方面大概1万医院,我们在GDP只有5%,这个全球平均是10%,我们比全球平均水平还低,随着我们综合水平的提高,这个比例会越来越大。但这个方面,我们的这个地位医疗的一些报名的事件,我们每年增长23%,能不能通过大数据应用缓解这些矛盾,我认为是很迫切的。这是欧盟关于医疗设备成立一个大数据的一个服务公司,都在做这样的一个讨论。
在大数据里,移动医疗可能会成为我们自己的医生,将来总有一天,会变成我们医疗的医生。现在有人预测,到2015年,大概有5亿台手机会有医疗功能,但是现在大部分还很少。但是大家现在大家都在做,苹果公司都在做,就是通过手机来测血糖,或者测你哮喘的病,测医疗单子,现在这些方面,咱们都会得到一些比较普遍的应用。另外在公共安全方面,我们国家每年大概6千多亿的损失,有20多万死亡,这个损失很大。我也举一个例子,就是吉林一个县发大水,也是汶川地震时期,大家都在默哀,觉得是老天爷所为,无能为力,但是,我们如果有了天气预报,有了地理地貌这些信息,我们可以避免这些灾难的发展。
四、突发事件
在突发事情上,如果政府有采取这个措施,是可以避免的。举一个例子,北京的一个水灾,这个事故死了几十个人,北京市政府领导给我们的情况是:那是一个旅游景点,有一个河沟,一个经理看情况不好,就告诉他们,不到十几分钟以后,山洪暴发了,否则的话,就可想而知了。
如果我们有天气预报,我们都可以知道。更可怕的是北京机场有一个河,就是再下点雨,就可以倒灌到地下室,如果倒灌了以后,这个楼就宣布要倒塌,这些手段,这些技术没有人去说,这些都是不是很困难的事情,但是需要这些数据的开放。
大家可能知道南京煤气管道,一个农民工施工的时候,煤气爆炸,把农民工拘留起来,在北京我就愤愤不平,在南京讲课的时候,我跟他们说,我说你这个领导应该给他一个哪儿有管道有这个数据。他晚上请我吃饭的时候说刘院士,我真没有这个数据,说三米外有一个数据,其实不到一米的时候,这个管道就被挖出来了。这个数据有没有?有的有,有的没有,就是政府部门没有公开,这些数据不能不开放。
就像江苏省的GDP,又是沿海的,这么发达的城市,这些数据都没有,你就比较危险。所以我们的大数据喊的那么厉害,却没有落实到实处,我的意见就是赶紧找找你的问题,看看那能不能用大数据去解决。否则讲了半天,他的价值,就没有体现。我们说的净化,但是他跟环境的一样,这些数据在那儿摆着,你跟你的问题结合起来,他才能发挥他的价值。这些灾害方面,需要大数据的平台。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26