
三大因素制约可穿戴设备的大数据梦想
可穿戴设备之所以吸引人,其中一个非常重要的因素就在于用户粘性。PC互联网时代促成了商业的繁华,与工业时代有个最大的区别就在于用户粘性被缩短,我们只要借助于互联网就能完成基于信息流的活动。而到了移动互联网之后,商业繁华被进一步推动,也就是我们当前所看到的移动互联网热潮,其中的关键原因也在于用户粘性,也就是说基于智能手机的移动互联网更深一步地与用户之间建立了粘性。
如果用一句话来形容,也就是说PC互联网的用户粘性是按小时计算,而移动互联网的用户粘性被缩短到了按分钟计算,这种用户粘性深度绑定就会释放出更多的商业行为,这也就是当前移动互联网的浪潮高于之前PC互联网浪潮的关键原因所在。而进入可穿戴设备时代,由于人与设备之间实现了更深入,可以说是无缝的连接,用户粘性从移动互联网的按分钟计算转变到了按秒进行计算。
可想而知,其所释放出来的商业价值必将超越当前的移动互联网与PC互联网,这也是为什么可穿戴设备从诞生那天开始就一直在争议中不断的飞速发展的原因。很显然的一个原因就是我们看到了当其所构建的用户粘性被进一步缩短之后,所释放出来的商业价值将超越当前由移动互联网所带来的改变。
而可穿戴设备之所以能释放更大的商业价值,关键就在于粘性建立背后所产生的大数据。可穿戴设备作为人体数据的流入与流出的双向渠道,其数据流出的背后隐藏的就是商业机会,而数据流入的背后隐藏的就是数据背后的商业呈现。可以说,基于可穿戴设备的大数据价值是目前全球范围所有从业者的一个共识,也是一些提出可穿戴设备免费这一观点人士的基础依据。
不过在我看来,目前谈可穿戴设备的大数据价值挖掘商业模式还为时过早。不可否认,未来可穿戴设备的核心价值在于大数据,硬件本身所能创造的价值非常有限,不论价格高低,都是一次性的价格表现形式。但其核心价值的大小则取决于大数据的延伸、挖掘,这也是我们所看到的谷歌眼镜没有有效地实现价值放大,其关键原因并不是硬件产品本身不可使用所造成,而是由于大数据不能有效支撑其价值放大。
而对于目前大部分的可穿戴设备从业者们而言,不论是希望借助于设备所收集的大数据进行价值挖掘,还是借助于大数据形成来放大可穿戴设备价值,都还需要一段路要走。至少从短期来看,盈利模式还是基于相对传统的硬件产品销售本身上,而不是依赖于可穿戴设备的大数据挖掘商业模式上。制约可穿戴设备大数据商业价值的主要原因有以下三方面:
1、数据过于碎片化。
由于可穿戴设备产品形态目前还处于一个快速裂变的过程,从智能眼镜、智能手表、智能手环、智能鞋子、智能饰品、智能鞋子到智能服装等。这种快速裂变的产品形态对于一个新兴产业而言,在市场上所呈现的就是产品碎片化的局面。一方面产品碎片化,另外一方面在产品碎片化的基础上创业者又处于分化状态,这就导致不同产品、不同品牌所采集到的数据未能实现互联、互通。而这种数据过于碎片化的结果,当然就使得所采集到的数据不是大数据,而是“小”数据,其价值显然难以有效挖掘。
2、市场普及度不高。
由于可穿戴设备是一个新兴的业态,不论是业内外,对于可穿戴设备产业的认知都还没有形成一个统一、清晰的认识。大众对于可穿戴设备的认知不仅模糊,而且在很大程度上可谓是陌生。受制于消费市场普及的因素,制约了可穿戴设备产业的市场普及,也就意味着可穿戴设备的用户使用量相对比较小众。从产品形态层面来看,目前通常局限于智能手表、智能手环。而就从智能手表、智能手环层面来看,目前还只是局限于一部分对新鲜科技事物感兴趣,或者是比较关注新兴事物的群体。正是由于市场普及程度的制约,很显然地就制约了产品的用户使用量,制约了产品的数据采集数量,制约了数据成为“大”数据的进程。
3、用户粘性不高。
可穿戴的本质是借助于可穿戴设备进一步增强人与智能设备之间的使用粘性,但从目前的实际情况来看粘住用户还需要一段路要走。其中最主要原因是两方面,一是受制于整个产业链技术的限制,不论是硬层面的芯片、传感器、电池、通讯等,还是软层面的算法、结果反馈等方面,都还处于探索阶段;另外一方面则是产业技术人才的缺失,尤其是我国目前从事于可穿戴设备产业的技术人才大部分都是从IT或通讯产业跨界而来。正是这两方面的因素,就导致了可穿戴设备在商业化的过程中,其产品都存在着不同程度的缺陷。最直接的表现就是当前用户普遍反映的监测不精准、使用体验不佳、监测结果无建议等,导致普遍用户在购买可穿戴设备佩戴很短的一段时间之后,就直接将其抛弃了,这也就意味着开发者所采集的数据基本难以成为有效、有价值的数据。
当然,影响可穿戴当前数据有效采集的因素多种多样,上述三方面因素是制约着可穿戴设备大数据是否能够有效形成与挖掘的关键因素。这三方面因素,可以说在短时间内还将会伴随着整个产业的发展继续存在着,也就意味着在短期内将难以得到有效地改善。因此,对于可穿戴设备产业的创业者们而言,目前距离可穿戴设备大数据价值的梦想还有一段路,这个梦想在短期内还难以实现。而当前最现实可行的并不是将自己的商业模型建立在大数据的价值梦想上,而是依托于可穿戴设备本身的产品销售获取盈利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29