
三大因素制约可穿戴设备的大数据梦想
可穿戴设备之所以吸引人,其中一个非常重要的因素就在于用户粘性。PC互联网时代促成了商业的繁华,与工业时代有个最大的区别就在于用户粘性被缩短,我们只要借助于互联网就能完成基于信息流的活动。而到了移动互联网之后,商业繁华被进一步推动,也就是我们当前所看到的移动互联网热潮,其中的关键原因也在于用户粘性,也就是说基于智能手机的移动互联网更深一步地与用户之间建立了粘性。
如果用一句话来形容,也就是说PC互联网的用户粘性是按小时计算,而移动互联网的用户粘性被缩短到了按分钟计算,这种用户粘性深度绑定就会释放出更多的商业行为,这也就是当前移动互联网的浪潮高于之前PC互联网浪潮的关键原因所在。而进入可穿戴设备时代,由于人与设备之间实现了更深入,可以说是无缝的连接,用户粘性从移动互联网的按分钟计算转变到了按秒进行计算。
可想而知,其所释放出来的商业价值必将超越当前的移动互联网与PC互联网,这也是为什么可穿戴设备从诞生那天开始就一直在争议中不断的飞速发展的原因。很显然的一个原因就是我们看到了当其所构建的用户粘性被进一步缩短之后,所释放出来的商业价值将超越当前由移动互联网所带来的改变。
而可穿戴设备之所以能释放更大的商业价值,关键就在于粘性建立背后所产生的大数据。可穿戴设备作为人体数据的流入与流出的双向渠道,其数据流出的背后隐藏的就是商业机会,而数据流入的背后隐藏的就是数据背后的商业呈现。可以说,基于可穿戴设备的大数据价值是目前全球范围所有从业者的一个共识,也是一些提出可穿戴设备免费这一观点人士的基础依据。
不过在我看来,目前谈可穿戴设备的大数据价值挖掘商业模式还为时过早。不可否认,未来可穿戴设备的核心价值在于大数据,硬件本身所能创造的价值非常有限,不论价格高低,都是一次性的价格表现形式。但其核心价值的大小则取决于大数据的延伸、挖掘,这也是我们所看到的谷歌眼镜没有有效地实现价值放大,其关键原因并不是硬件产品本身不可使用所造成,而是由于大数据不能有效支撑其价值放大。
而对于目前大部分的可穿戴设备从业者们而言,不论是希望借助于设备所收集的大数据进行价值挖掘,还是借助于大数据形成来放大可穿戴设备价值,都还需要一段路要走。至少从短期来看,盈利模式还是基于相对传统的硬件产品销售本身上,而不是依赖于可穿戴设备的大数据挖掘商业模式上。制约可穿戴设备大数据商业价值的主要原因有以下三方面:
1、数据过于碎片化。
由于可穿戴设备产品形态目前还处于一个快速裂变的过程,从智能眼镜、智能手表、智能手环、智能鞋子、智能饰品、智能鞋子到智能服装等。这种快速裂变的产品形态对于一个新兴产业而言,在市场上所呈现的就是产品碎片化的局面。一方面产品碎片化,另外一方面在产品碎片化的基础上创业者又处于分化状态,这就导致不同产品、不同品牌所采集到的数据未能实现互联、互通。而这种数据过于碎片化的结果,当然就使得所采集到的数据不是大数据,而是“小”数据,其价值显然难以有效挖掘。
2、市场普及度不高。
由于可穿戴设备是一个新兴的业态,不论是业内外,对于可穿戴设备产业的认知都还没有形成一个统一、清晰的认识。大众对于可穿戴设备的认知不仅模糊,而且在很大程度上可谓是陌生。受制于消费市场普及的因素,制约了可穿戴设备产业的市场普及,也就意味着可穿戴设备的用户使用量相对比较小众。从产品形态层面来看,目前通常局限于智能手表、智能手环。而就从智能手表、智能手环层面来看,目前还只是局限于一部分对新鲜科技事物感兴趣,或者是比较关注新兴事物的群体。正是由于市场普及程度的制约,很显然地就制约了产品的用户使用量,制约了产品的数据采集数量,制约了数据成为“大”数据的进程。
3、用户粘性不高。
可穿戴的本质是借助于可穿戴设备进一步增强人与智能设备之间的使用粘性,但从目前的实际情况来看粘住用户还需要一段路要走。其中最主要原因是两方面,一是受制于整个产业链技术的限制,不论是硬层面的芯片、传感器、电池、通讯等,还是软层面的算法、结果反馈等方面,都还处于探索阶段;另外一方面则是产业技术人才的缺失,尤其是我国目前从事于可穿戴设备产业的技术人才大部分都是从IT或通讯产业跨界而来。正是这两方面的因素,就导致了可穿戴设备在商业化的过程中,其产品都存在着不同程度的缺陷。最直接的表现就是当前用户普遍反映的监测不精准、使用体验不佳、监测结果无建议等,导致普遍用户在购买可穿戴设备佩戴很短的一段时间之后,就直接将其抛弃了,这也就意味着开发者所采集的数据基本难以成为有效、有价值的数据。
当然,影响可穿戴当前数据有效采集的因素多种多样,上述三方面因素是制约着可穿戴设备大数据是否能够有效形成与挖掘的关键因素。这三方面因素,可以说在短时间内还将会伴随着整个产业的发展继续存在着,也就意味着在短期内将难以得到有效地改善。因此,对于可穿戴设备产业的创业者们而言,目前距离可穿戴设备大数据价值的梦想还有一段路,这个梦想在短期内还难以实现。而当前最现实可行的并不是将自己的商业模型建立在大数据的价值梦想上,而是依托于可穿戴设备本身的产品销售获取盈利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22