
大数据时代分析变革即将来临
日前,Teradata首席分析官Bill Franks在北京与部分业内媒体记者举行了一次关于大数据分析的圆桌会议,在这次会议上,Bill Franks带来了他的新书《数据分析变革》,并就大数据分析的最新发展趋势发表了精辟见解。
Bill Franks表示,经常会有人问这样的问题,大数据是不是存在泡沫,这种泡沫会不会破裂?比如,前段时间一个记者问我,说他们估计差不多一年半之后,大数据泡沫就会破裂。他当时问我大数据是否有泡沫的时候,我的答案是这样的,从某种方式来说是有泡沫,从另一种方式来说没有泡沫。
为什么说有泡沫呢?确实现在市场上有一些过多的炒作,认为通过大数据能够获得所需要的一切。如果不能实现这些目标,有可能标志着大数据泡沫会破裂。如果不是泡沫的话,再过多少年之后进行回顾,会觉得当时对大数据的看法是非常滑稽的。
我们所经历的真正的互联网泡沫,是大家非常熟悉的,从1999年到2000年。当时并不是说互联网本身缺少价值,而是认为这种价值的获得太容易、太快速,所以造成了当时的泡沫。但是看一下目前的情况,互联网已经深入到社会的方方面面,给人们的工作、生活带来了非常深远的影响。目前,大数据也是这种情况,现在大数据的发展非常艰难,人们有各种各样的说法。如果再过五年或者十年,我们会看到大数据可以带来非常好的影响。过去大数据都是在企业里面,各个领域都有大数据。前几年,Teradata提出企业级数据仓库,就是如何把这些数据源整合在一起,来挖掘企业内部的数据价值。
Franks说,我们要避免重蹈覆辙,目前看到在企业里有很多单独的大数据部门,大数据分散在各个地方,这些数据也由不同的人员加以管理。我们应该避免过去传统数据管理问题,要把数据都统一集中在一起。我们会提供相关的工具、技术、专业服务,帮助客户更多地挖掘数据价值。我们能够帮助挖掘客户的业务问题所在,给他们找到具体方法,能够提供具体的工具和技术,更大地发挥大数据的作用。一方面我们能够在前端帮助客户发现数据的价值,另一方面在后台也能进行跟踪,给它进行量化,发现数据价值所在。
Bill Franks认为,我们现在面对着数据分析的变革,通过一种“手工定制”的办法,针对企业具体的问题,做一些大数据的分析,给他们提供定制化的解决方案。这里涉及高价值的问题或者低价值的问题,一般都要探索哪些是属于高价值的问题,需要有一些定制的或者深层的分析。对于那些低价值的问题,可以部署一些业务流程等进行解决。企业可以在技术、业务流程里,嵌入一些解决方案的数据分析,能够自动实施,不需要太多的人工参与就能实现。
谈到电信领域的高级分析,Bill Franks说,从电信商运营的角度来说,也需要大量的高级分析,比如一些无线的基站和铁塔,什么时候会出现问题。包括一些网络上传送的速率情况,都传输什么内容,是电子邮件还是什么?这些分析与传统的分析是不一样的。传统的分析是这个电话是谁打给谁的,而现在的分析更多一些,包括基础设施、网络、基站等,很多环节都需要这样的高级分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23