
大数据时代分析变革即将来临
日前,Teradata首席分析官Bill Franks在北京与部分业内媒体记者举行了一次关于大数据分析的圆桌会议,在这次会议上,Bill Franks带来了他的新书《数据分析变革》,并就大数据分析的最新发展趋势发表了精辟见解。
Bill Franks表示,经常会有人问这样的问题,大数据是不是存在泡沫,这种泡沫会不会破裂?比如,前段时间一个记者问我,说他们估计差不多一年半之后,大数据泡沫就会破裂。他当时问我大数据是否有泡沫的时候,我的答案是这样的,从某种方式来说是有泡沫,从另一种方式来说没有泡沫。
为什么说有泡沫呢?确实现在市场上有一些过多的炒作,认为通过大数据能够获得所需要的一切。如果不能实现这些目标,有可能标志着大数据泡沫会破裂。如果不是泡沫的话,再过多少年之后进行回顾,会觉得当时对大数据的看法是非常滑稽的。
我们所经历的真正的互联网泡沫,是大家非常熟悉的,从1999年到2000年。当时并不是说互联网本身缺少价值,而是认为这种价值的获得太容易、太快速,所以造成了当时的泡沫。但是看一下目前的情况,互联网已经深入到社会的方方面面,给人们的工作、生活带来了非常深远的影响。目前,大数据也是这种情况,现在大数据的发展非常艰难,人们有各种各样的说法。如果再过五年或者十年,我们会看到大数据可以带来非常好的影响。过去大数据都是在企业里面,各个领域都有大数据。前几年,Teradata提出企业级数据仓库,就是如何把这些数据源整合在一起,来挖掘企业内部的数据价值。
Franks说,我们要避免重蹈覆辙,目前看到在企业里有很多单独的大数据部门,大数据分散在各个地方,这些数据也由不同的人员加以管理。我们应该避免过去传统数据管理问题,要把数据都统一集中在一起。我们会提供相关的工具、技术、专业服务,帮助客户更多地挖掘数据价值。我们能够帮助挖掘客户的业务问题所在,给他们找到具体方法,能够提供具体的工具和技术,更大地发挥大数据的作用。一方面我们能够在前端帮助客户发现数据的价值,另一方面在后台也能进行跟踪,给它进行量化,发现数据价值所在。
Bill Franks认为,我们现在面对着数据分析的变革,通过一种“手工定制”的办法,针对企业具体的问题,做一些大数据的分析,给他们提供定制化的解决方案。这里涉及高价值的问题或者低价值的问题,一般都要探索哪些是属于高价值的问题,需要有一些定制的或者深层的分析。对于那些低价值的问题,可以部署一些业务流程等进行解决。企业可以在技术、业务流程里,嵌入一些解决方案的数据分析,能够自动实施,不需要太多的人工参与就能实现。
谈到电信领域的高级分析,Bill Franks说,从电信商运营的角度来说,也需要大量的高级分析,比如一些无线的基站和铁塔,什么时候会出现问题。包括一些网络上传送的速率情况,都传输什么内容,是电子邮件还是什么?这些分析与传统的分析是不一样的。传统的分析是这个电话是谁打给谁的,而现在的分析更多一些,包括基础设施、网络、基站等,很多环节都需要这样的高级分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08