
大数据时代,要扎紧个人信息保护的篱笆
近日,关于网易邮箱用户数据库疑似遭泄露的消息在网上引起波澜,涉及数据达数亿条。此前,第三方支付机构也被曝出存在实名认证漏洞,还有一些第三方支付曝出泄露客户信息、账户被盗刷等问题。有调查显示,76%的被调查者认为个人信息在大数据时代更容易被泄露。在过去一年中,超过一半的受访者认为自己的个人信息被泄露过。调查中,对大数据使用以及个人信息保护立法,有20%的受访者认为要“加大惩罚力度,引入惩罚性赔偿制度”。(10月24日《法制日报》)
消费者看病后,接到保健服务、健康管理公司的推销电话;购车购房后,保险公司很快就跟消费者取得联系;生完宝宝刚离开医院产科的女士,推销奶粉、婴儿服务的电话、邮件、短信就络绎不绝,推销人员甚至直接加上了消费者的社交账号。不少用户在网上随意搜索地点、物品,很快就有相应的旅行产品、相关门类的商品出现在推荐栏。
这些非常常见的现象,反映出的共同问题都在于,消费者在完成某方面消费行为,或完成某类主题的网络浏览后,其个人基本信息悄无声息的被披露给相关的商品或服务供应商。如果刨除病毒攻击、木马植入因素,披露消费者信息的,很多情况下就是电商平台、医院、电信企业、汽车及房地产销售企业(直接转让信息);还有一种可能,是社交网络、支付平台、网络安全软件,或安装在手机、PC端的其他软件或消费者,或消费者浏览过的网站、使用过的手机应用,主动捕捉了消费者的个人信息,经过提取挖掘后作为重要的数据资产,与相关企业分享使用或出售给其他企业使用。
上述两种情况,共同特征就在于搜集、挖掘分析、对外分享或出售消费者信息,并未经过消费者本人的许可,或是故意将信息授权条款加入到内容繁复的网站登录、软件和APP许可声明之中。随着国内外网络企业跨界整合的提速,一些社交网络、第三方支付机构、电商网络及其他应用软件建立了密切的结盟合作关系,甚至通过并购整合,成为了同一家集团公司掌控的分支机构——企业鼓励消费者跨网站、软件应用相互绑定身份,借此可以验证消费者个人身份信息、社会关系信息、账户信息,结合个人网络行为信息、设备信息等多方面信息,开展更趋精确的数据挖掘和预测分析。
当企业可以非常精准预测消费者行为后,确实能够更有针对性的开展营销,提高客户服务水平,但从另一个角度来看,企业的行为方式也将变得更为智能化,可以更高效率的把握消费者痛点,实施消费者更难以抵挡的诱导和操纵。
数量更多、更为翔实、(经过多来源信息比对验证)精确度更高的消费者信息,商业价值非常可观。但很少有人意识到,多来源信息的结合,也意味着信息发送外泄的出口增多,大型企业实施数据安全管理的难度因而提升,一旦发生数据泄露,消费者多方面、多来源隐私信息就将毫无保留的呈现在黑客面前,甚至大庭广众之下。
非但如此,未经消费者个人许可,企业方面超范围开展的数据利用,还可能给消费者带来损失。美国计算机科学专家埃里克·西格尔在《大数据预测》就举例指出,已经有社交网站为用户提供未来职业选项的预测服务,也同时为雇主服务预测员工的离职倾向,后一指数较高的员工将很可能在毫不知情的情况下成为职场竞争的牺牲品。又如,医疗机构通过购买其他来源的数据,经分析预判某些病患经抢救仍将无法存活,就会拒绝救治这些病患。
笔者以为,国家有关部门应致力于分别从立法、行政执法、司法、公益救助四个方面,扎紧篱笆,加强消费者个人信息保护。在立法环节,应出台规范的消费者授权个人信息使用条款,网络企业以免费或低价产品、服务换取消费者个人信息授权后,需要严格依照授权要求开展数据挖掘分析,不得以任何方式在未经消费者许可授权或超出授权范围使用消费者个人信息(例如,不得在仅获得消费者个人基本信息授权的情况下,自行挖掘获取消费者的社会关系、账户,结合消费者个人网络行为等信息开展商业开发利用)。要提高对违法违规非法采集使用消费者个人信息做法的罚款数额,完善处罚方式,加大这方面违法违规案件的通报范围,形成强有力的震慑。
在行政执法环节,应明确公安机关、网络信息主管部门、市场监管部门等单位保护消费者个人信息的职责分工,各部门各司其职,有效加强重点监管,加大消费者个人信息保护的抽查力度,畅通举报渠道,严格依法依规处置这方面的侵权案件。在司法、公益救助方面,可以考虑以政府购买的方式,在各地设立消费者就个人信息泄露起诉相关企业的救助基金,为起诉个人提供部分资助,鼓励消费者运用法律手段维护合法权益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08