
Google更多的数据胜过更好的算法 _数据分析师
时下大数据的关注是越来越高,关于大数据的讨论也是火热异常。而作为玩转大数据的巨头之一Google对数据的重视更是非同一般,这次Google给我们带来的是更多是数据意味着更好的语音识别。其产品研发总监Peter Norvig更认为:更多的数据胜过更好的算法!
Google发布的新研究论文详述了语音识别程序幕后的数据科学,包含了语音搜索和向YouTube视频中添加文字说明和标签。虽然其中的算法多数人都无法掌握,但是思想却是完全可以理解的。论文的出发点在于人们对大数据热衷的原因及为工作选择合适数据集的重要性。
Google自始至终都认为数据是越多越好,用产品研发总监Peter Norvig的话就是:更多的数据胜过更好的算法。尽管Norvig的评价中还有一些对算法的吹毛求疵,但是显然更多的人接受了这篇论文并在大数据领域引起了热烈的讨论。模型用来学习的数据越多,模型就会变的越精确 即使开始时不是最尖端的。
言归正传,下面我们来看一下更多的数据在语音识别系统的改善中所起到的作用。研究人员发现数据集和大型语言模型(维基百科对Google 研发中涉及到的n-gram模型的解释)可以降低在收到第一个单词时推测下一个单词时的错误率。比如Google高级研究员在10月31日关于这项研究的博客中给出的例子:一个好的模型在前两个单词是New York时推测下一个词时会更多的选择pizza而不是granola。在做语音搜索时,他的团队发现:模型的大小每增加两个数量级就可以减少10%的关系词错误率。
这里的关键在于什么类型的数据集对你的模型有益,不管它们是什么。对于搜索的测试,Google使用google.com匿名查询的随机样本中抽取没有出现拼写校正的230个单词。因为人们讲话和写作不同于普通的打字搜索,所以YouTube模型的数据都是来自新闻报道的录音和大型网站上的抓取。他们写道:单纯的就语言建模而言,各种各样的话题和口语风格让大型网站抓取成为语言模型建立的很好选择。
虽然这个研究并不一定具有突破性,但是却道出了大数据和数据科学为什么会在今天引起这么多的注意。随着消费者需求更智能的应用程序和更无缝的用户体验,每一块数据的选择及每一块数据对应分析方案无疑都是重中之重!(文章来源:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04