
PRINT过呈是最常用的SAS过呈之一。我们在生成了一个数据集之后,如果不是太大,一般都用一个proc print ;run;过程步来列出数据集的内容,这样可以检查变量与值之间对应是否正确,数据输入是否正确。为了列出一个指定的数据集,在PROC语句中使用DATA=选项指定要列表的输入数据集名。
在过程内使用VAR语句可以指定要列出的变量并指定顺序。比如,
proc print data=c9501;
var name chinese math;
run;
在过程中使用WHERE语句可以从输入数据集中选一个子集来处理,在PRINT过程中使用WHERE可以指定只列出满足条件的观测。
SAS的输出都显示在输出窗口。在运行了多个过程后,输出窗口积累了多个过程的输出,有时不易找到或特定的结果。新版本的SAS系统提供了一个结果管理窗口来管理输出,叫Results窗口。这个窗口缺省是打开的,固定放置在运行环境的左半部分,如果没有可以从"View - Results"菜单打开。
3.标题及全程语句
TITLE'标题内容'; 添加标题 ,为了取消这个标题,只要用一个空TITLE语句,即TITLE;
FOOTNOTE 添加脚注
OPTIONS 可以规定系统运行的一些选择项,比如输出是否每页有页号,是否有日期,输出的行宽,输出每一页的高度(行数)等等。
4. 计算总计与小计
用BY语句与SUM语句就可以既计算总和也计算分组小计。比如,我们除了要计算学生购买课外书总支出外还想分男、女生计算总支出,可以用下面的程序。注意由于数据集BKMONEY中没有性别的信息,我们用了带MERGE语句的数据步来横向合并C9501和BKMONEY两个数据集 。
3.3汇总表格
PRINT过程可以制作列表,它列出所有观测。当观测个数很多时,这样的列表意义不大。TABULATE过程制表不是列出观测,而是计算观测的分类统计量,绘制统计量的表格。这对于数据的汇总比较有用。TABULATE可以作出很复杂的表,其一般格式为:
PROC TABULATE DATA=数据集名;
CLASS 分类变量;
VAR 分析变量;
TABLE 页维说明,行维说明,列维说明/选项;
RUN;
其中CLASS语句给出分类变量,用分类变量可以给观测分类,计算统计量时可以对每一类分别计算。VAR语句给出区间变量。TABLE语句规定了绘制什么样的表格。我们用例子说明:
例1 对C950IBK数据集,我们希望表中绘出男、女生的课外书支出总和,
因为变量SEX和AMOUNT中间用逗号分隔,所以SEX在行维,表格的行用SEX的值区分,AMOUNT在列维,它画在列标题中。如果只是想统计男女生人数,可以只用SEX 一个变量。
区间变量的缺省统计量是总和,分类变量的缺省统计量是频数。如果我们要计算其它统计量,可以用"变量名*统计量名"的形式。统计量名包括N,NMISS, MEAN, STD, MIN, MAX, RANGE, SUM, USS,CSS,STDERR,CV,T(检验均值为O的t统计量值),PRT(t统计量的p值),VAR,SUMWGT(权数变量的和),PCTN(某类观测占总观测个数的百分比),PCTSUM(某类观测的总和占全部总和的百分比)。
例2:用如下程序求男、女生的数学、语文成绩平均值及标准差:
上面的表格只分类计算了统计量值,如果要计算总的统计量值,只要加一个ALL关键字。table sex,all (math chinese)*(mean std);
可以在TABULATE过程中使用KEYLABEL语句指定各统计量的标签。其格式为KEYLABEL关键字='标签';或者用如下方式:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16