京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据怎样帮助我们了解气候变化
气候变化确实威胁着我们的星球,全球都应感受到它的毁灭性后果。美国航空航天局(NASA)气候模拟中心(NCCS)高性能计算负责人Daniel Duffy博士,介绍了大数据对气候变化研究工作的至关重要性。
NCCS为大规模的NASA科学项目提供高性能计算、存储和网络资源。其中许多项目涉及全地球性天气和气候模拟。这些模拟生成的海量数据是科学家永远读取不完的。因此,益发有必要提供分析和观察这些模拟产生的大数据集的方法,更深入了解气候变化等重大科学问题。
大数据和气候变化:它们是怎样运作的?
大数据和气候研究息息相关;没有海量数据就无法进行气候研究。
NCCS拥有名曰“探索号超级计算机”的计算机集群,主要目标是提供必要的高性能计算和存储环境,以满足NASA科学项目的需求。探索号计算机正在开展一系列不同的科学项目,其中的大部分计算和存储资源被用于天气与气候研究。
探索号计算机是一种高性能计算机,专门为极大规模紧密耦合的应用而设计,是硬软件紧密结合和相互依存的系统。虽然该计算机没有被用于从卫星等遥感平台采集数据,但该计算机运行的许多大气、陆地和海洋模拟都需要观测数据的输入。使用探索号计算机的科学家不断收集输入其模型的全球性观测数据。
然而,如果科学无法以有效手段观测和比对数据,即使向它们提供海量数据也毫无意义。NASA全球建模和模拟办公室(GMAO)增强性动画就是这方面的范例,该办公室利用多方来源的观测信息驱动天气预报。
GMAO的GEOS-5数据模拟系统(DAS)将观测信息与建模信息融合,以生成任何时间内都最为精确和质地统一的大气图像。每6小时的累计观测超过500万次,并对气温、水、风、地表压力和臭氧层的变量进行比对。模拟观测分八大类型,每类对不同来源的变量进行测量。
数据处理
气候变化模型需要具有大量存储和数据快速接入且数据不断增加的计算资源。为满足这一要求,探索号计算机由多个不同类型的处理器组成:79200个英特尔Xeon核心、28800个英特尔Phi核心和103680个NVIDIA图像处理器(GPU)CUDA核心。
探索号计算机的总计算能力为3.36万亿次,或每秒3,694,359,069,327,360次浮点运算。为使大家更好地理解这一规模的计算能力,该计算机可在一秒钟内完成活在世上的每个人以每秒将两个数字相乘的速度连续运算近140个小时的运算量。
除了计算能力外,探索号计算机还具有约33拍字节(petabyte)的磁盘存储空间。典型的家庭硬盘容量为一兆兆(terabyte)字节,因此,该计算机的存储能力相当于33000个这类磁盘。如果用它存储音乐,你可以编排一个长度超过67000年而不重复的演奏清单。
NCCS每年都对探索号计算机进行升级。随着其服务器和存储的老化,在四或五年后替换而不是继续运行部分设备实际上能够提高效率。例如2014年年底至2015年年初利用升级的计算机群取代了探索号计算机2010年升级的设备。在地面空间、功率和冷却包络相同的情况下,升级后的NCCS可将计算能力提高约7倍。退役设备通常会转变用途,用于内部支持和其他业务或大学等外部站点,包括马里兰大学巴尔的摩分校(UMBC)和乔治梅森大学(GMU)。
数据映射:气候变化与预测
NCCS生成的数据推动了不同重要研究和政策文件的起草工作。
这一数据使人们能够就我们星球的气候变化影响进行更知情的对话,并有助于决策机构针对气候预测制定出适用战略与行动。例如,该数据已被用于气候变化专门委员会(IPCC)推出的评估报告。NCCS从事和NASA科学可视化工作室观测的数据模拟,介绍了IPCC第五次评估报告提出的气候模型,对气候和降雨预计在整个21世纪的变化方式做了说明。
于2005年袭击了美国墨西哥湾沿岸的卡特里娜飓风突显了准确预报的重要性。虽然它造成了巨大损失,但要不是预警预报给人们留出了适当准备时间,损失就会严重得多。如今,NCCS的超级计算机主要负责GMAO全球环流建模,其分辨率比卡特里娜飓风时提高了10倍,因而能够更准确地观察飓风内部,并有助于对其强度和规模做出更精确的估计。这意味着气象学家能够更深入地了解飓风的走向及其内部活动,这对于就卡特里娜飓风这类极端天气做出成功规划和准备至关重要。
此外,观测系统模拟试验(OSSE)还利用全球气候模型的输出成果模拟NASA提出的下一代遥感平台,从而向科学家和工程师提供了虚拟地球,以便在制作新的感应器或卫星之前研究大气遥测的新优势。
未来的气候变化数据
数据是NASA的主要产品。卫星、仪表、计算机甚至人员都可能频繁进出NASA,但数据尤其是地球观测数据具有永驻价值。因此,NASA必须不仅让其他NASA的站点和科学家,而且要让全球都用上它生成的数据。
仅时时生成的数据量就构成了一大挑战。在研究系统的科学家都难以使用数据集的今天,NASA以外的人们获得可用数据更是难上加难。因此,我们开始研究创建一项气候分析服务(CAaaS),将高性能计算、数据和应用编程接口(API)相结合,以便为在现场与数据共同运行的分析程序提供接口。换句话说,用户可就他们关心的问题提问,并利用NASA系统的运行进行分析,随后将分析结果返回用户。由于分析结果的规模小于生成它的原始数据,这一系统将减少经不同网络传送的数据量,而更重要的是,API可以大大减少用户和数据间的摩擦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26