京公网安备 11010802034615号
经营许可证编号:京B2-20210330
日前,CDA协会会员们在波士顿举办了一期沙龙活动,2位专家各自就不同领域的数据分析应用进行了分享,并重点探讨了数据分析人才 的培养。
一、嘉宾信息
Jared Christensen是Pfizer的高级研发总监,他在Pfizer工作有6年了。在加入Pfizer之前,他在Wyeth工作了5年,一直到2010年10月Pfizer收购Wyeth为止。Jared于2004年在哈佛公共健康学院完成他的博士研究。
Marie Gayron是Verisk Health公司人群健康部门的研究科学家。她被广为人知,是因为她开发了强大的算法来预测昂贵的事件,确定高风险人群,将数据转化为可执行的报告解决方案,通过自动化和数据可视化来提高流程效率。Marie女士,拥有塞勒姆州立大学理学学士学位和波士顿大学公共健康硕士学位。
二、公司信息
Pfizer Inc.(辉瑞公司)创建于1849年,迄今已有160多年的历史,总部位于美国纽约,是目前全球最大的以研发为基础的生物制药公司。辉瑞公司的产品覆盖了包括化学制药、生物制剂、疫苗、健康药物等诸多广泛而极具潜力的治疗及健康领域,同时其卓越的研发和生产能力处于全球领先地位。
Verisk Analytics Inc.总部位于美国新泽西州泽西城,是与美国房地产和意外保险风险相关的保险精算和保险数据规模最大的集成商。该公司于2009在美国上市。
三、 活动总结
1) 数据科学家职位
在美国,数据科学工作是薪资最高的工作之一;并且,对于在某一特殊领域(如:健康医疗、金融等)拥有实质性知识的数据科学家需求量极高。然而事实情况是,现有的博士或者硕士课程,难以满足巨大的数据科学家人才培养缺口;但是这也为教育或培训项目提供了一个培养数据科学家的机会。
2) 流行的统计软件
无论是在制药公司还是医疗保健公司,SAS依然是数据管理、分析和制作报告的常用统计软件。同时,在实践中需要熟悉数据库语言(SQL)。
3) 流行的统计技术
在制药公司,大部分的统计工作是关于进行临床试验。因此,学习掌握基本的设计和进行临床试验的原则(如:计算样本的大小和重要性)是必不可少的技能。如今,序列设计和贝叶斯自适应设计正在扮演更加重要的角色。
4) 非统计专业
如果你在学校没有学习过统计学课程,但是想要成为一名数据科学家,那最好学习一些基本的统计学知识和SAS编程语言。一个入门的好方法就是,加入一家咨询公司或者CRO,从而在不同行业中积累数据分析经验。尽管一些工作岗位要求统计学或者生物统计学博士学位,但是没有上述学位的一些人也能够拥有较强的数据分析技能。
5) 数据分析培训项目
在数据分析领域提供一些培训课程会是一件很有益的事情。然而,不同的行业需要不同的数据分析技能,课程设计应该考虑到这一点。咨询公司里面的数据科学工作会看重面试者的证书拥有情况,大的制药公司需要统计学相关学位。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01