京公网安备 11010802034615号
经营许可证编号:京B2-20210330
农业大数据展望:六大领域数据亟待推广
随着农业的发展尤其是农村电商的发展,农业上下游的农资销售、农业生产、农产品流通数据以及与农业关联的土地流转、气象、土壤、水文等数据,均获得大规模积累沉淀,这些大数据将成为农业决策的“大脑”。
继农村电商后,农业大数据获得决策层关注。
在近期国务院印发的《促进大数据发展行动纲要》中,要求推进各地区、各行业、各领域涉农数据资源的共享开放,加快农业大数据关键技术研发,推动农业资源要素数据共享。商务部等三部委印发的《推进农业电子商务发展行动计划》则强调,将移动互联网、云计算、大数据、物联网等新一代信息技术贯穿到农业电子商务的各领域各环节,切实增强自主创新能力。
21世纪宏观研究院认为,随着农业的发展尤其是农村电商的发展,农业上下游的农资销售、农业生产、农产品流通数据以及与农业关联的土地流转、气象、土壤、水文等数据,均获得大规模积累沉淀,这些大数据将成为农业决策的“大脑”,纾解当前农业产业链因信息不对称产生的痛点,从而驱动农业向精准化、网络化、智能化转变。
六大领域农业大数据亟待推广
当前,中国农业正处在以小农经营为主向规模化、机械化、集约化过渡的阶段。由于粗放生产、分散经营和农业自身的季节性、地域性特征,信息不对称,成为贯通农业产业链的共性问题。当前农业产业链令人头疼的四大痛点问题,根源之一往往在于信息的缺失:
一是种不好。种植、养殖的人力物力消耗大,农产品质量相对不高。这大多与农业经营者对种养技术和对病虫害、疫情信息把握不足有关系,也跟人力成本上升、使用假冒伪劣的农资产品有关;
二是销不出。农产品滞销、卖难问题多地频发,这往往由于农业经营者对同类产品生产数据估计不足,盲目生产而造成集中上市,另一方面则是消费者对农产品质量缺乏足够的信心;
三是地难租。扩大生产规模租不到地,这既与地块分散、资金短缺有关,又与缺少土地流转信息渠道相关;
四是钱难借。除了抵押物,农业经营者难以提供充分的信用数据,因而往往难以借到钱,这也限制其更新生产设备、扩大生产规模。
上述四大痛点问题,涉及到农业经营者与政府、上游的农资企业、下游的消费者、金融机构等多个主体之间的信息对接。21世纪宏观研究院注意到,在打破“数字鸿沟”方面,国内已有不少机构、企业进行了初步探索。依据目前的探索,至少六大领域的大数据将发挥作用:
其一,生态环境数据,包括气象、水文、土壤和病虫害、动物疫情数据。这些数据是农业日常经营调整农业用水、农业产品投入的主要依据,准确掌握这些数据将有助于做到精准种植、养殖,减少资源浪费和成本投入。
其二,农业技术及农资流通数据。掌握农业技术能保障农产品高效、丰产,而基于农资流通数据的分析,则为农业经营者选择农资产品提供判断依据。种子、种苗的流通数据,亦可判断某个品类农产品的生产规模,为调整规模的依据。
其三,农产品价格与农产品流通数据。生产规模的调节、生产品类的调整,必须要事前获知农产品价格和各主产区的产销情况。另外,通过B2B、B2C电子商务平台促使农产品供求信息对接,能拓展销售市场,提高农产品价格。
其四,土地流转数据。通过土地流转供求双方信息的对接,促使流转更高效率,减少一方撂荒、一方找地的情况出现。
其五,农产品质量可追溯数据。通过上述的农资使用数据、生产流通数据的整合,可构建出从农场到餐桌的可追溯数据,以消除消费者对农产品质量的疑虑,提高农产品的购买率。
其六,农业经营者征信数据。前述数据可纳入银行、农村信用社以及保险机构的征信系统,作为发放贷款、设置农业保险的信用依据,以此推动金融和农业的融合。
21世纪宏观研究院认为,随着上述六大领域农业大数据的推广应用,将降低交易成本,提高生产效率及产品品质,提升农产品交易效率。从本质上看,则是促进粗放分散式经营和规模化、集约化经营向精准化、智能化经营的转变。
涉农部门需多方合力
围绕着大数据与农业的融合,农业链条上的不同产业或迎来生态的转变。
以大数据驱动下的单一农场为例,经营者将更多使用绿色、高效的农资产品,早已水涨船高的简单劳动力将被替换,而适应大数据的知识型、技术型“新农业经营者”将有更多的用武之地。如适应“水肥一体化”的发展,水溶性肥料、液体肥将获得发展,而此前大行其道的普通化学肥料将因为颗粒不能完全溶解而堵塞滴灌设备,则可能遭到市场的淘汰。
不过,需要指出的是,农业大数据技术多数还处在起步阶段,未能做到足够的智能化;承载农业大数据的农业物联网、智能监测设备等售价过高;另外,由于推广力度尚不大,农业经营者尚未有足够认识。
21世纪宏观研究院认为,当前无论是“电商下乡”还是大数据产业,都处于初级阶段。依托大数据技术广泛推动农业发展,在短时间内并不现实。农业大数据市场还是一个充满机遇、有待开发的市场。为此,需要政府部门、涉农企业、大数据企业和农业生产经营主体多方合力,共同推进农业大数据的示范与推广。
对政府而言,首先应当推动大数据的基础设施建设。这包含两个方面,一是要大力推动通信基站、电信宽带的建设,为各类农业经营者“触网”、联通大数据提供基础;二是要尽可能开发政府掌握的各类涉农大数据,包括天气数据、农业用地的各类元素含量数据、病虫害和动物疫情的监测数据,以供农资企业合理调配生产,并制定针对各区域各品种的农资解决方案。
其次,政府需要提供政策支持,引导涉农企业、大数据企业构建以品种或区域为中心的农业大数据平台。让农业大数据服务成为企业的直接盈利项目或配套的增值服务。
此外,还需要引导农业经营者主动向大数据农业转型,对优秀案例做示范推广,引导农业经营者学习“云上的示范田”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23