京公网安备 11010802034615号
经营许可证编号:京B2-20210330
电信企业如何用活大数据
当前,大数据浪潮风起云涌,各行各业都在探讨大数据的用途。对于电信企业来说,有潜在价值的大数据包括哪些?如何才能用活大数据?
笔者认为,除了主要来自于业务运营支撑系统、企业管理系统的传统数据外,电信企业拥有的大数据主要来源于互联网、移动互联网等,以非结构化为主,构成更全面数据源,如上网行为数据、网上交易数据、位置数据、网管数据、信令数据、微博数据、即时通信数据、网页、传感器数据、音频数据、视频文件、图片、日志、实时监控视频等。
大数据给运营商核心价值将带来很大提升。第一,大数据将助运营商提升市场响应能力,推进实现智慧运营。大数据让运营商能够全面洞察客户行为,精确化地识别客户,精准地制订策略,支持经营决策,增强电信核心竞争力。第二,大数据将助运营商提升客户服务创新能力,成为创新信息服务的参与者。数据产品化,将使运营商能够提供基于客户状态、位置、终端等个性化需求的信息服务。第三,笔者认为,大数据将使运营商提升资源优化配置能力,成为智能管道的主导者。大数据可让运营商精确识别客户、业务、SP,优化网络资源调度,分档分阶按需供给网络资源,实行差异化服务。第四,大数据将帮助运营商提升对产业链的服务能力,助力其成为综合平台的提供者。数据能力合理开放,将促进产业应用,提升全产业链综合服务能力。
对内应用增强竞争力
现阶段,运营商支持流量经营、智能管道的数据应用还处于初级水平,数据应用主要采用基于内部整合数据的分析挖掘手段。近期,运营商应着力整合企业内外部数据,做到内部交易数据与互联网交互数据的融合,由此开展用户行为模式的分析与数据挖掘并支撑各类数据应用,包括:支持精细化营销、支持产品规划和创新、支持网络优化和投资、支持能力开放与合作。长远来看,运营商应建立基于大数据驱动,以消费者为中心、以客户体验为重心的企业运营及组织变革模式,如亚马逊将数据化运营贯穿业务全过程,以选品、价格和便利作为亚马逊客户体验的三个支柱。
运营商内部的大数据应用场景可包括以下方面:第一是精确化营销与维系挽留。从海量数据中分析客户行为偏好,结合客户与收入数据,可以实现对现有业务的精确化营销和维系挽留,包括锁定特定业务的目标客户以及锁定可能流失的客户。第二是精确化网络运维。通过对流量和流向的分析,实现网络资源的动态配置;分析网络日志,支撑网络优化和故障定位;通过对客户流量和上网行为偏好的分析,实现智能管道策略的个性化制定以及网络阀值的动态调整。第三是精确化客服支撑。利用大数据实时技术实现客服信息的实时提醒(例如流量使用提醒);利用大数据技术的高速查询性能,提升清(账)单查询速度,并有能力实现客户互联网使用详单查询。第四是关系链研究。收集客户通讯录、通话行为、网络社交行为等大数据以及客户资料等传统数据,开展交往圈分析,利用社交圈子提高营销效率,改进服务,低成本扩大产品的影响力。
对外经营拓展业务模式
运营商对外可充分利用电信行业的数据优势,拓展电信业务模式,将大数据直接产品化,基于客户状态、位置、终端、喜好等,为社会提供信息服务。如:开展广告、数据开放等业务。在广告推送方面,可通过客户上网类别反映的需求动向,精准锁定目标客户,支撑电信业务或者其他商家开展手机定向互联网广告服务。在数据开放方面,数据开放业务除了提供基本的原始数据以外,电信企业还可以利用本系统能力,基于网络信令和互联网客户标签数据分析,形成专业的行业应用报告,精确锁定有需求的潜在客户,为后向商家及内部合作伙伴管理提供准确定量的行业及客户分析报告,实现营销推送、分析评估等能力对外开放。例如:为特定区域(小区或商业区)分析客户群的类型,帮助区域商业规划、门店选址、大型LED广告动态投放等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09