京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据科技如何影响现代体育
大数据被越来越多的领域熟知与运用。在体育领域,大数据也渐渐的被大家重视起来。从教练,球员,再到工作人员,运用这些数据可以更好的帮助球员得分,合同谈判,或是避免伤病。
在2014年麻省理工斯隆体育分析大会(MIT Sloan Sports Analytics Conference)上,教练们与球员们在一起,分析了大数据的潜力,与它对于现代体育的8个影响。
在棒球比赛中,有的时候,好球与坏球真的只是差之毫厘,如果完全靠裁判的眼力与经验,出现误判在所难免。Sportvision公司特此为棒球大联盟30支球队都装上了帮助判断好球与坏球的设备。他们这项技术还应用在了橄榄球,赛车等运动中。“当然,没有任何东西会取代裁判的判罚。我们只是通过数据的收集与分析,技术的现场运用,帮他们做出准确率更高的判罚。”Sportvision公司的CEO,汉克·亚当斯在谈论这项技术时说到。其实这一技术跟足球中的门线技术如出一辙。
对于像我这种深度重病的球迷,喜欢去看球队或是球员的各种数据。丹·布鲁克斯说,“我们将数据按照大多数人可以理解的标准进行分析整理。我们可以看到不同投手(这里同时指棒球的投手)在不同情况下,不同比赛中,对于比赛有着不同的影响。我们可以找出裁判在面对不同身高的击球手时,对于好球与坏球判罚的数据图。”丹·布鲁克斯是BrooksBaseball.net的创始人,在这个网站上,你可以看到很多高阶数据。
很多高科技公司都试图或者已经进入这个领域。阿迪达斯有一个名为miCoach的系统,在球员的球衣上附加一个设备。通过收集来的数据,教练可以更加准确的了解到,谁更需要休息。而且该设备能如实的反映球员在场上的状态数据,如心跳,速度,加速度等。
这种不是通过训练或是实验收集来的数据,可以帮助训练师和医务人员更好的了解运动员的身体情况,并及时的做出应对措施。印第安纳波利斯小马的四分卫Matt·Hasselbeck说他最喜欢那种可以减少运动员受伤概率的设备,“通过检测水合作用(Hydration)和收集头部撞击的数据,可以分析出更合理,对于运动员更加安全的战术。”
目前来讲,大多数比赛的数据还是人工收集。我们都知道,很多比赛节奏较快,有些数据稍纵即逝。一个名为Zebra Technologies的公司试图记录更为全面,更为准备的现场数据。RFID,是他们MotionWorks Sports Solution的一部分。通过将RFID标签放在设备里,球上,或是运动员的身上,来跟踪收集其运动方向,距离,速度等数据。这个标签每秒闪烁25次,以120毫秒的速度传送数据。另一家名为SportVU,在每一个NBA球馆安放了6个摄像头,以每秒25次的速度来收集每一名球员和篮球的每一次移动。
通过历史数据的分析,从而球队可以更好的“抓住”球迷。“这是一个关于了解每一个球迷喜好的数据收集,有的人更喜欢某个客队来的时候来看球,有的人喜欢下午4点的比赛。这是一个关于了解是什么影响球迷们做出决定,比通常人们所知道的因素更加具体,更加细化的数据。”John·Forese说道,他是一个数据收集与分析公司,LiveAnalytics的副总裁兼总经理。
很多职业球队,诸如新英格兰爱国者,就通过特定的手机软件上的一些功能,比如在座位上通过软件买食物,或是查看厕所排队时间,来分析球迷的想法。
前多伦多猛龙总经理布莱恩·克朗格洛,球队应该专门聘请数据专家,用最先进的机器与软件进行数据分析。“现在数据分析方面的工作越来越多。如果你花上25万美金雇佣2个或3个全职数据分析师帮你做这些工作,你就可以轻松在这一方面领先于其他球队。”
旧金山49人主席Paraag Marathe提到,因为教练跟球员很多时候需要在一瞬间做出判断,所以收集来的那些数据要经过更加专业,细致的处理,这样才更容易被他们记住并运用。如果这些数据不能被教练或是球员们很好的运用,那我们收集来它们做什么?”
数据分析人员可以将重要数据给教练,从而帮助他们做出更好的决定。布莱恩·伯克是Advanced NFL Stats网站的创始人,他说,“高阶数据可以帮助教练或是球员做出更明智的决策,从而左右比赛的走向。”
49人的主席Marath说到,好的数据运用,可以帮助一名“不出众”的球员签下大合同,也可以让一名“出色”的教练被解雇。现在人们尝试用数据去支撑合同里所提出的要求。他们可以将数据进行各种整合,分析,从而达到自己的目的。NBA总裁亚当·席尔瓦说,分析师在结束2012年NBA停摆中起了巨大的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01