
大数据科技如何影响现代体育
大数据被越来越多的领域熟知与运用。在体育领域,大数据也渐渐的被大家重视起来。从教练,球员,再到工作人员,运用这些数据可以更好的帮助球员得分,合同谈判,或是避免伤病。
在2014年麻省理工斯隆体育分析大会(MIT Sloan Sports Analytics Conference)上,教练们与球员们在一起,分析了大数据的潜力,与它对于现代体育的8个影响。
在棒球比赛中,有的时候,好球与坏球真的只是差之毫厘,如果完全靠裁判的眼力与经验,出现误判在所难免。Sportvision公司特此为棒球大联盟30支球队都装上了帮助判断好球与坏球的设备。他们这项技术还应用在了橄榄球,赛车等运动中。“当然,没有任何东西会取代裁判的判罚。我们只是通过数据的收集与分析,技术的现场运用,帮他们做出准确率更高的判罚。”Sportvision公司的CEO,汉克·亚当斯在谈论这项技术时说到。其实这一技术跟足球中的门线技术如出一辙。
对于像我这种深度重病的球迷,喜欢去看球队或是球员的各种数据。丹·布鲁克斯说,“我们将数据按照大多数人可以理解的标准进行分析整理。我们可以看到不同投手(这里同时指棒球的投手)在不同情况下,不同比赛中,对于比赛有着不同的影响。我们可以找出裁判在面对不同身高的击球手时,对于好球与坏球判罚的数据图。”丹·布鲁克斯是BrooksBaseball.net的创始人,在这个网站上,你可以看到很多高阶数据。
很多高科技公司都试图或者已经进入这个领域。阿迪达斯有一个名为miCoach的系统,在球员的球衣上附加一个设备。通过收集来的数据,教练可以更加准确的了解到,谁更需要休息。而且该设备能如实的反映球员在场上的状态数据,如心跳,速度,加速度等。
这种不是通过训练或是实验收集来的数据,可以帮助训练师和医务人员更好的了解运动员的身体情况,并及时的做出应对措施。印第安纳波利斯小马的四分卫Matt·Hasselbeck说他最喜欢那种可以减少运动员受伤概率的设备,“通过检测水合作用(Hydration)和收集头部撞击的数据,可以分析出更合理,对于运动员更加安全的战术。”
目前来讲,大多数比赛的数据还是人工收集。我们都知道,很多比赛节奏较快,有些数据稍纵即逝。一个名为Zebra Technologies的公司试图记录更为全面,更为准备的现场数据。RFID,是他们MotionWorks Sports Solution的一部分。通过将RFID标签放在设备里,球上,或是运动员的身上,来跟踪收集其运动方向,距离,速度等数据。这个标签每秒闪烁25次,以120毫秒的速度传送数据。另一家名为SportVU,在每一个NBA球馆安放了6个摄像头,以每秒25次的速度来收集每一名球员和篮球的每一次移动。
通过历史数据的分析,从而球队可以更好的“抓住”球迷。“这是一个关于了解每一个球迷喜好的数据收集,有的人更喜欢某个客队来的时候来看球,有的人喜欢下午4点的比赛。这是一个关于了解是什么影响球迷们做出决定,比通常人们所知道的因素更加具体,更加细化的数据。”John·Forese说道,他是一个数据收集与分析公司,LiveAnalytics的副总裁兼总经理。
很多职业球队,诸如新英格兰爱国者,就通过特定的手机软件上的一些功能,比如在座位上通过软件买食物,或是查看厕所排队时间,来分析球迷的想法。
前多伦多猛龙总经理布莱恩·克朗格洛,球队应该专门聘请数据专家,用最先进的机器与软件进行数据分析。“现在数据分析方面的工作越来越多。如果你花上25万美金雇佣2个或3个全职数据分析师帮你做这些工作,你就可以轻松在这一方面领先于其他球队。”
旧金山49人主席Paraag Marathe提到,因为教练跟球员很多时候需要在一瞬间做出判断,所以收集来的那些数据要经过更加专业,细致的处理,这样才更容易被他们记住并运用。如果这些数据不能被教练或是球员们很好的运用,那我们收集来它们做什么?”
数据分析人员可以将重要数据给教练,从而帮助他们做出更好的决定。布莱恩·伯克是Advanced NFL Stats网站的创始人,他说,“高阶数据可以帮助教练或是球员做出更明智的决策,从而左右比赛的走向。”
49人的主席Marath说到,好的数据运用,可以帮助一名“不出众”的球员签下大合同,也可以让一名“出色”的教练被解雇。现在人们尝试用数据去支撑合同里所提出的要求。他们可以将数据进行各种整合,分析,从而达到自己的目的。NBA总裁亚当·席尔瓦说,分析师在结束2012年NBA停摆中起了巨大的作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04