
大数据时代,谁能保障互联网安全
网络安全事件近期频发,网络安全警钟再次响起。互联网企业应如何保护数据安全?
5月27日下午到夜间,很多用户发现自己的支付软件无法登陆,故障2.5个小时;28日,国内最大的旅游在线预定网站也出了问题,故障时间长达12小时。两家企业均是互联网行业中的佼佼者,出现如此问题,显示出网络安全和稳定遭遇严峻挑战,在当下“互联网+”热潮中,网络安全和稳定更应该引起高度重视。随着这几年互联网、移动互联网的发展,我们每个人都实实在在的感受到了方便快捷的互联网的服务,但是这几天的事情告诉我们,在方便背后是黑色危机。
互联网与生活
对大多数人而言,用手机查看账单,看看水、煤、电缴费,看看信用卡还款情况,看看理财账户的收益,都是方便快捷的方式。而在数千里之外的一次施工,就可以让一切中断。隐私暂且不说,软件托管的资金、理财都是真金白银。网络出点问题也好,服务器有点麻烦也罢,你的钱就会成为一笔糊涂账,这是很可怕的。
同样,现在很多人都依靠网上预订行程。出行从订机票、出发车辆送机场,到落地对方城市车辆接到酒店,再到酒店住宿,返程机票,车辆接送,几乎拥有一整套服务。然而网络出现问题,很多预订了行程的客人就会出现各种问题,因为网络或者服务器的问题,机票没出,车辆没订,酒店没订,或者时间拖延,出行者就会遇到大麻烦。
我们的生活已经与互联网,移动互联网紧紧联系在了一起,互联网就像空气一样必不可少。具有行业主导地位的互联网公司对于个人的重要性不亚于银行、电信这些关系到国计民生的国企。他们出点问题,就会是社会性的大问题。
如果用一句话来总结:此次事件损失是惨重的,教训是深刻的。如何对此类事件有所防范,成为各大互联网企业与用户共同面对的问题。有个生僻词从今天开始就会成为热门词汇—灾备。
什么是灾备?
一般来说,灾备可以分为数据级、应用级和业务级三个级别,可能大多数人对这三种级别的灾备都不是很了解,那么下面我们就来具体的了解一下这三种灾备。
数据级灾备主要关注的就是数据,就是在灾难发生之后,可以确保数据不受到损坏。对于级别较低的数据级灾备来说,可以将需要备份的数据通过人工的方式保存到异地实现。如将备份的磁带(盘或光盘)定时运送到异地保存就是方法之一。而较高级的数据灾备方案则依靠基于网络的数据复制工具,实现生产中心不同备份设备之间或是生产中心与灾备中心之间的异步/同步的数据传输,如采用基于磁盘阵列的数据复制功能。
应用级灾备是建立在数据级灾备的基础上的,对应用系统进行复制,也就是在异地灾备中心再构建一套应用支撑系统。支撑系统包括数据备份系统、备用数据处理系统、备用网络系统等部分。应用级灾备能提供应用系统接管能力,即在生产中心发生故障的情况下,灾备中心便能够接管应用,从而尽量减少系统停机时间,提高业务连续性。
业务级灾备是最高级别的灾备系统。它包括非IT系统,所以当发生大的灾难时,用户的办公场所可能会被损坏,用户除了需要原来的数据以外,还需要工作人员在一个备份的工作场所能够正常地开展业务。
金融业的信息系统标准一直有明确的监管要求,而且严于其他行业。我国金融行业标准中的《银行业信息系统灾难恢复管理规范》对灾难分级、恢复时间有详细规定。中国银监会印发的《商业银行数据中心监管指引》也已经明确,总资产规模一千亿元人民币以上且跨省设立分支机构的法人商业银行,以及省级农村信用联合社,应设立异地模式灾备中心。
选择具有灾备系统的互联网公司
据记者采访的多位网络安全技术专家介绍,目前,不少普通的互联网企业并没有灾难备份,对用户而言,选择具有灾备系统的互联网公司显得尤为重要。
江淮云信易通公司则表示,通过云计算技术可以低成本地实现多个数据备份及快速恢复,并进行更严格的云上权限管理。如果没有完善的数据可靠性机制保障和安全防御能力,对互联网公司而言意味着致命性打击。
据了解,信易通是一家数据公司,和中国金融电子化公司(中国人民银行软件开发中心)签订灾备协议,为中小企业制定数据灾备方案,所有的数据由中国人民银行电子化公司备份传输到北京,提供数据级和业务级的灾备,安全性很高。
以前,自建灾备中心往往需要建设基础设施和全部的应用系统的硬件软件,覆盖全部应用系统数据的实时数据传输,应用管理,这个建设周期很长,而且成本高、见效慢。
相比之下,信易通的云灾备中心基础设施可以共享中小金融机构灾备服务中心的机房,网络可以实时通信,网络安全设备监控设备共享,数据层面可以共享虚拟化云存储,应用层可以根据每个金融机构不同需求在平时的时候可以分配一定的计算资源、存储资源。这样对比下来,采用云灾备服务中心最明显的特点就是投入成本更少而见效更快了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07