可视分析技术已经发展了近十年。在这些年间,人们研究了大量的可视分析方法和案例,发表了不少研究论文。然而,对于一些基本问题,人们依然没有明确的答案。例如,一个基本的可视分析流程是怎样的?一个可视分析系统应该包含哪几个组件?如何评价和比较不同的可视分析系统?在VAST’2014的一篇论文中[1],Sacha等人提出了一个可视分析模型,系统性的回答了以上问题。
如图1所示,他们的模型包含左边计算机的部分和右边人的部分。在计算机部分中,数据被绘制为可视化图表,同时也通过模型进行整理和挖掘。可视化图表既可以显示原始数据的特性,也可以显示模型的结果。用户也可以基于可视化图表来对模型进行调整,指导建模过程。在人的部分中,作者提出了三层循环:探索循环、验证循环和知识产生循环。在探索循环中,人们通过模型输出和可视化图表寻找数据中可能存在的模式,基于此采取一系列行动,例如改变参数,去产生得到新的模型输出和新的可视化图表。这样做的动机在验证循环之中:人们通过模式洞察到数据的特点,产生可能的猜测。这些猜测的验证正是基于探索循环中的行动。最后,在验证循环之上有知识循环,不断的收集验证循环中已被验证的猜测,总结为知识。
说明
图 1. 可视分析中的知识产生模型
本模型的提出是建立在已有的各种模型的基础之上的,如图2所示。例如,之前的信息可视化流程图描述了如何从数据产生可视化图表,数据挖掘流程图则描述了如何对数据进行预处理和建模并最终得到分析结果。之前的交互步骤模型描述了人在分析过程中的评价、目标产生和执行步骤,意义构建模型则描述了人在整个分析过程中对问题理解的加深。它们在本模型中被分解为三层循环。此外,众多的交互词汇系统的描述了探索循环中的行为。
图 2. 本模型和已有模型之间的关系
作者利用本模型对一些实际的可视分析系统进行了评价和比较,如图3所示。Jigsaw是一款免费的文本可视分析系统[2],它可以读入文本数据,自动提取实体,建立主题模型,因此强于建模。此外,它提供了一系列可视化图表来显示文本的各种特征,因此也强于可视化。它的许多可视化,例如文件聚类视图,是基于主题模型的,因此可以算是对模型的可视化。用户可以在多种视图之间切换,改变各种视觉特性,因此它很好的支持了探索循环。此外,它还提供了tablet视图,允许用户记录自己的发现,并整理归类,提供了一定的验证循环支持。然而,Jigsaw不支持对原始数据预处理,也不太支持模型参数选择。
Weka是一款免费的数据挖掘系统 [3],它允许用户对数据进行一系列的预处理,例如数据删除、离散化、文本分词等等,同时支持大量的数据挖掘算法,涵盖了各种分类、聚类、关联规则挖掘模型。但是该系统支持的可视化相当有限,例如显示散点图矩阵,或者显示决策树结果、显示神经网络结构。另外,用户探索仅限于更换预处理方法和更换模型,功能较为简单。用户无法整理自己的发现,因此该系统对验证循环的支持并不好。
Tableau是一款商业化的可视化系统 [4],它允许用户通过漂亮的UI来预处理数据,通过简单的拖拽来设计各种可视化图表。但是一直以来,它支持的模型很有限,直到今年,Tableau支持了R语言,它才真正用于建模功能。Tableua支持灵活的数据探索。它还支持spreadsheet和storyboard等强大的功能,可以生成MLV视图和类似powerpoint的演示界面。这些都是对验证循环的支持。
nSpace是一款商业化的文本分析系统 [5],虽然它对数据预处理和数学模型的支持很弱,但是它提供了多种可视化图表显示数据的不同特征。这些图表可以较好的支持数据探索循环。最为与众不同的是,nSpace提供了sandbox界面用于组织用户的发现,并生成结果报告。该功能比Jigsaw的tablet和Tableau的storyboard更为强大,能较好的支持验证循环。
图 3.利用本模型对不同的可视分析系统进行评价和比较。
作者也谈到,本模型具有一些局限性,比如未考虑多个分析人员之间的协作与交流,未考虑不同可视分析系统之间的切换,未考虑分析人员和领域专家、政府官员之间的沟通,未考虑动态变化的流数据。这些问题可以进一步研究。
基于此模型,作者展望了未来可视分析的研究方向。例如,在探索循环中,研究者可以更多的考虑通过可视化与数学模型进行交互的技术,也可以考虑如何引导用户快速系统的发现数据中的模式,或者如何自动检测模式。在验证循环中,研究者可以如何保存之间的探索结果,以方便回溯,验证其可靠性。研究者可以考虑如何组织不同的探索结果,辅助用户产生假设,甚至自动产生假设。在知识发现循环中,研究者可以做的比较少。毕竟,知识发现只在人脑中。但研究者可以提供更多更方便的可视化视图和数学模型,方便用户从多个角度考虑同一个数据、同一个问题。这样,也许用户更容易最终得到有用的知识。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03