京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“互联网+”创新路:大数据转化为交管战斗力
全国公安交警系统大数据支撑公路交通安全防控体系建设现场会近日在贵州省贵阳市召开,来自公安部交管局,北京等16个省、自治区、直辖市交警总队以及江苏南京等6个城市交警支队的60余人参加会议。
会上,贵州交警总队立足省情,以大数据引领公路防控体系建设,用“互联网+”思维打造数据铁笼,探寻出有别于东部、不同于西部其他省份、具有贵州特色公安交通管理发展新路的做法,受到与会代表的肯定。
公安部交管局副局长王金彪说:“贵州交警总队积极推动‘互联网+’公路交通安全防控体系建设并取得了阶段性成效,‘贵州经验’代表了全国公安交通管理工作发展的正确方向,值得全国各省、自治区、直辖市公安交警部门学习借鉴。”
天网工程实现跨界共融
曾经欠开发、欠发达的贵州,目前已步入汽车社会。庞大的驾驶人群体和机动车保有量,迅猛增长的通车里程,以及公安交通管理海量数据的存储、管理、分析、挖掘和应用,对贵州公安交通管理工作提出全新挑战。
贵州吸取国内成熟的阿里云计算技术,采取租用电信机房和设备的方式,搭建了由619台服务器、46台网络交换机、12PB总存储组成,总规模达到提供1万个核运算能力、计算能力相当于10台银河巨型计算机的警务云平台。
以云平台为支撑,交管部门构建了汇聚公安内外部数据的大数据资源池,汇集公安内部各警种和外部安监、交通、保险、广电等社会资源。对内,开放接口,与治安、刑侦、技侦、反恐等警种和科信、情报等部门共享公安信息资源;对外,与安监、交通、保险、广电等多部门共享社会信息资源,汇聚全省“天网工程”6.8万路信号和贵州路网全部监控资源。
为了实现跨警种、跨行业、跨部门的跨界共融,贵州省将原本分散的碎片化数据和“条数据”聚合成“块数据”,实现“块数据×”效应,牵引职能、职责融合式发挥,逐步推动形成道路交通管理的整体性治理格局。
管住关键少数破解难题
交通安全防控要管住关键少数,贵州省搭建道路交通安全监管综合云平台,将全省5.33万家客货运企业、62.7万名营运驾驶人,1755家公路客运、旅游客运、校车和危险品运输重点企业和3.52万台重点监管车辆,以及4341家租赁企业和3.53万台租赁车辆信息纳入监管视线。
为筑牢源头管控第一道防线,贵州省与独立第三方信用评估及信用管理机构“芝麻信用”建立重点驾驶人征信系统。目前已有371名因交通违法记满12分、酒驾、超员20%以上、超速50%以上而进入“黑名单”库的重点车辆驾驶人被企业解聘,最大限度避免了不符合要求的驾驶人进入重点车辆驾驶人领域。
结合农村道路安全基础薄弱,交通事故高发的实际,贵州省开发农村道路交通社会化管理云平台,将公路交通安全防控体系网络延伸至占全省道路总里程95.5%的农村道路。交管部门通过对人、车、路、重要时间节点等道路交通安全数据进行采集、研判、预警,向市、县、乡、村、组五级责任人推送分析结果和预警信息,着力破解农村地区交通管理“有机制、无落实,有机构、无人员,有措施、无手段,有责任、无追究”的“四有四无”难题,打造农村道路交通安全的数据铁笼。
山东省公安厅交警总队副总队长张贤艳说:“农村道路交通管理是一个薄弱环节,是在全国具有共性的问题,利用大数据创新办法、创新手段、创新方式、改革勤务模式,为我们提供了改革的思路、方法和管理框架。”
新模式织密三张防控网
贵州省不断创新道路交通管理新模式,着力织密三张防控网。贵州交警总队将重点车辆征信体系等大数据监管方式延伸至人、车、路、环境的全方位、全时空管理,创新大数据背景条件下交通安全监管模式,织密上游静态防控网。
针对当前防控体系建设存在的执法站布点不科学、执法站建设进度慢、执法站基础保障不到位等问题,交管部门在已规划的157个执法站基础上,进一步强化以视频监控防控网、路面执法防控网、区域警务协作网为骨架的防控体系建设,织密中游动态防控网。
交通安全防护设施严重缺乏是贵州面临的突出问题。交管部门将县、乡两级政府工作开展情况,“两站(乡镇交管站、交通安全劝导服务站)”“两员(专职交通管理员、交通安全义务协管员)”工作落实情况,“生命防护工程”推进情况全部纳入平台监管,形成政府主导下管理信息共享、安全责任共担、社会力量共治的农村道路交通安全管理新格局,织密下游基础防控网。
广东省广州市公安局交警支队支队长欧日文说:“我们要把‘贵州经验’带回广州,将大数据应用上升到更高。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26