
“互联网+”创新路:大数据转化为交管战斗力
全国公安交警系统大数据支撑公路交通安全防控体系建设现场会近日在贵州省贵阳市召开,来自公安部交管局,北京等16个省、自治区、直辖市交警总队以及江苏南京等6个城市交警支队的60余人参加会议。
会上,贵州交警总队立足省情,以大数据引领公路防控体系建设,用“互联网+”思维打造数据铁笼,探寻出有别于东部、不同于西部其他省份、具有贵州特色公安交通管理发展新路的做法,受到与会代表的肯定。
公安部交管局副局长王金彪说:“贵州交警总队积极推动‘互联网+’公路交通安全防控体系建设并取得了阶段性成效,‘贵州经验’代表了全国公安交通管理工作发展的正确方向,值得全国各省、自治区、直辖市公安交警部门学习借鉴。”
天网工程实现跨界共融
曾经欠开发、欠发达的贵州,目前已步入汽车社会。庞大的驾驶人群体和机动车保有量,迅猛增长的通车里程,以及公安交通管理海量数据的存储、管理、分析、挖掘和应用,对贵州公安交通管理工作提出全新挑战。
贵州吸取国内成熟的阿里云计算技术,采取租用电信机房和设备的方式,搭建了由619台服务器、46台网络交换机、12PB总存储组成,总规模达到提供1万个核运算能力、计算能力相当于10台银河巨型计算机的警务云平台。
以云平台为支撑,交管部门构建了汇聚公安内外部数据的大数据资源池,汇集公安内部各警种和外部安监、交通、保险、广电等社会资源。对内,开放接口,与治安、刑侦、技侦、反恐等警种和科信、情报等部门共享公安信息资源;对外,与安监、交通、保险、广电等多部门共享社会信息资源,汇聚全省“天网工程”6.8万路信号和贵州路网全部监控资源。
为了实现跨警种、跨行业、跨部门的跨界共融,贵州省将原本分散的碎片化数据和“条数据”聚合成“块数据”,实现“块数据×”效应,牵引职能、职责融合式发挥,逐步推动形成道路交通管理的整体性治理格局。
管住关键少数破解难题
交通安全防控要管住关键少数,贵州省搭建道路交通安全监管综合云平台,将全省5.33万家客货运企业、62.7万名营运驾驶人,1755家公路客运、旅游客运、校车和危险品运输重点企业和3.52万台重点监管车辆,以及4341家租赁企业和3.53万台租赁车辆信息纳入监管视线。
为筑牢源头管控第一道防线,贵州省与独立第三方信用评估及信用管理机构“芝麻信用”建立重点驾驶人征信系统。目前已有371名因交通违法记满12分、酒驾、超员20%以上、超速50%以上而进入“黑名单”库的重点车辆驾驶人被企业解聘,最大限度避免了不符合要求的驾驶人进入重点车辆驾驶人领域。
结合农村道路安全基础薄弱,交通事故高发的实际,贵州省开发农村道路交通社会化管理云平台,将公路交通安全防控体系网络延伸至占全省道路总里程95.5%的农村道路。交管部门通过对人、车、路、重要时间节点等道路交通安全数据进行采集、研判、预警,向市、县、乡、村、组五级责任人推送分析结果和预警信息,着力破解农村地区交通管理“有机制、无落实,有机构、无人员,有措施、无手段,有责任、无追究”的“四有四无”难题,打造农村道路交通安全的数据铁笼。
山东省公安厅交警总队副总队长张贤艳说:“农村道路交通管理是一个薄弱环节,是在全国具有共性的问题,利用大数据创新办法、创新手段、创新方式、改革勤务模式,为我们提供了改革的思路、方法和管理框架。”
新模式织密三张防控网
贵州省不断创新道路交通管理新模式,着力织密三张防控网。贵州交警总队将重点车辆征信体系等大数据监管方式延伸至人、车、路、环境的全方位、全时空管理,创新大数据背景条件下交通安全监管模式,织密上游静态防控网。
针对当前防控体系建设存在的执法站布点不科学、执法站建设进度慢、执法站基础保障不到位等问题,交管部门在已规划的157个执法站基础上,进一步强化以视频监控防控网、路面执法防控网、区域警务协作网为骨架的防控体系建设,织密中游动态防控网。
交通安全防护设施严重缺乏是贵州面临的突出问题。交管部门将县、乡两级政府工作开展情况,“两站(乡镇交管站、交通安全劝导服务站)”“两员(专职交通管理员、交通安全义务协管员)”工作落实情况,“生命防护工程”推进情况全部纳入平台监管,形成政府主导下管理信息共享、安全责任共担、社会力量共治的农村道路交通安全管理新格局,织密下游基础防控网。
广东省广州市公安局交警支队支队长欧日文说:“我们要把‘贵州经验’带回广州,将大数据应用上升到更高。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22