
“互联网+”创新路:大数据转化为交管战斗力
全国公安交警系统大数据支撑公路交通安全防控体系建设现场会近日在贵州省贵阳市召开,来自公安部交管局,北京等16个省、自治区、直辖市交警总队以及江苏南京等6个城市交警支队的60余人参加会议。
会上,贵州交警总队立足省情,以大数据引领公路防控体系建设,用“互联网+”思维打造数据铁笼,探寻出有别于东部、不同于西部其他省份、具有贵州特色公安交通管理发展新路的做法,受到与会代表的肯定。
公安部交管局副局长王金彪说:“贵州交警总队积极推动‘互联网+’公路交通安全防控体系建设并取得了阶段性成效,‘贵州经验’代表了全国公安交通管理工作发展的正确方向,值得全国各省、自治区、直辖市公安交警部门学习借鉴。”
天网工程实现跨界共融
曾经欠开发、欠发达的贵州,目前已步入汽车社会。庞大的驾驶人群体和机动车保有量,迅猛增长的通车里程,以及公安交通管理海量数据的存储、管理、分析、挖掘和应用,对贵州公安交通管理工作提出全新挑战。
贵州吸取国内成熟的阿里云计算技术,采取租用电信机房和设备的方式,搭建了由619台服务器、46台网络交换机、12PB总存储组成,总规模达到提供1万个核运算能力、计算能力相当于10台银河巨型计算机的警务云平台。
以云平台为支撑,交管部门构建了汇聚公安内外部数据的大数据资源池,汇集公安内部各警种和外部安监、交通、保险、广电等社会资源。对内,开放接口,与治安、刑侦、技侦、反恐等警种和科信、情报等部门共享公安信息资源;对外,与安监、交通、保险、广电等多部门共享社会信息资源,汇聚全省“天网工程”6.8万路信号和贵州路网全部监控资源。
为了实现跨警种、跨行业、跨部门的跨界共融,贵州省将原本分散的碎片化数据和“条数据”聚合成“块数据”,实现“块数据×”效应,牵引职能、职责融合式发挥,逐步推动形成道路交通管理的整体性治理格局。
管住关键少数破解难题
交通安全防控要管住关键少数,贵州省搭建道路交通安全监管综合云平台,将全省5.33万家客货运企业、62.7万名营运驾驶人,1755家公路客运、旅游客运、校车和危险品运输重点企业和3.52万台重点监管车辆,以及4341家租赁企业和3.53万台租赁车辆信息纳入监管视线。
为筑牢源头管控第一道防线,贵州省与独立第三方信用评估及信用管理机构“芝麻信用”建立重点驾驶人征信系统。目前已有371名因交通违法记满12分、酒驾、超员20%以上、超速50%以上而进入“黑名单”库的重点车辆驾驶人被企业解聘,最大限度避免了不符合要求的驾驶人进入重点车辆驾驶人领域。
结合农村道路安全基础薄弱,交通事故高发的实际,贵州省开发农村道路交通社会化管理云平台,将公路交通安全防控体系网络延伸至占全省道路总里程95.5%的农村道路。交管部门通过对人、车、路、重要时间节点等道路交通安全数据进行采集、研判、预警,向市、县、乡、村、组五级责任人推送分析结果和预警信息,着力破解农村地区交通管理“有机制、无落实,有机构、无人员,有措施、无手段,有责任、无追究”的“四有四无”难题,打造农村道路交通安全的数据铁笼。
山东省公安厅交警总队副总队长张贤艳说:“农村道路交通管理是一个薄弱环节,是在全国具有共性的问题,利用大数据创新办法、创新手段、创新方式、改革勤务模式,为我们提供了改革的思路、方法和管理框架。”
新模式织密三张防控网
贵州省不断创新道路交通管理新模式,着力织密三张防控网。贵州交警总队将重点车辆征信体系等大数据监管方式延伸至人、车、路、环境的全方位、全时空管理,创新大数据背景条件下交通安全监管模式,织密上游静态防控网。
针对当前防控体系建设存在的执法站布点不科学、执法站建设进度慢、执法站基础保障不到位等问题,交管部门在已规划的157个执法站基础上,进一步强化以视频监控防控网、路面执法防控网、区域警务协作网为骨架的防控体系建设,织密中游动态防控网。
交通安全防护设施严重缺乏是贵州面临的突出问题。交管部门将县、乡两级政府工作开展情况,“两站(乡镇交管站、交通安全劝导服务站)”“两员(专职交通管理员、交通安全义务协管员)”工作落实情况,“生命防护工程”推进情况全部纳入平台监管,形成政府主导下管理信息共享、安全责任共担、社会力量共治的农村道路交通安全管理新格局,织密下游基础防控网。
广东省广州市公安局交警支队支队长欧日文说:“我们要把‘贵州经验’带回广州,将大数据应用上升到更高。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07