京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据和预测分析的非常规性用途
在本文中,威尔•凯利将与我们分享一些关于大数据和预测分析,在多个行业的一些非常规的用途。
我们已经性接触过众多围绕着大数据和预测分析的公约、挑战、目前流行的思维理念、以及商业模式的文章了。然而,除了对于大数据的恐惧、怀疑、不确定性以及对于大数据概念的大肆炒作之外,目前,已经有一些企业开始把大数据分析技术用在一些非常规的领域了。
露天采矿挖掘数据追踪
首先,让我们来看看日立数据系统(HDS)如何利用大数据和预测分析来支持某些大型建设、采矿和交通运输等行业的重工业应用的吧。当我与他们的产品规划副总裁迈克尔•海;软件产品的营销高级主管萨拉•加德纳;以及全球营销的高级副总裁阿西姆•查希尔进行交流时,他们向我概述了大数据和预测分析如何在重型矿山设备上工作的。
这篇由萨拉•加德纳撰写的题为《日立数据机:露天矿数据挖掘》重点讲述了日立是如何利用大数据来支持其露天矿数据挖掘机械工作的。我不是在谈论数据的挖掘,而是说矿产的地下开采。加德纳的文章中说明了一些极端例子:如数据机床推动了大数据和预测分析,进而帮助完成我们很多人都认为是非常规性的业务任务。
一些大数据业内人士将大数据和预测分析的应用程序在重型工业设备和运输系统的运用视为未来整个大数据运用领域增长的一个主要因素。
提高电子商务客户体验
尽管零售商店行业的竞争已然十分激烈了,一些相同的问题也开始延伸到电子商务领域里。一家名为Bloomreach的创业公司旨在利用大数据来提高电子商务的客户体验。这是基于客户的搜索习惯来提供客户专属页面,而不是修改整个网站的用户体验。Bloomreach公司的技术侧重于通过分析产品需求关注内容发现。
Bloomreach公司的首席执行官Rajdedatta向我介绍了该公司如何利用大数据技术来加强电子商务的客户体验。他们的技术人员在大型电子商务网站的后端,使他们能够在保证强大的客户体验的同时,基于客户搜索条件的最佳匹配来定制新产品登陆页面。
虽然将大数据应用程序作为电子商务和客户体验的一部分可能看起来已经平常了。但这为我们指明了三个发展方向。第一个发展方向是大数据将向电子商务的世界的内容战略家、信息建筑师、设计师发起挑战。第二个发展方向是大数据的流畅性将成为以后的电子商务人才的重要要求。第三个,也许是最重要的发展方向是电子商务网站后端的大数据技术将成为在搜索和网上销售竞争中吸引顾客眼球所必须的技术。
收银机和呼叫中心背后的应用分析
可能大数据最为知名的应用领域就是跟踪客户的行为了。然而,日立商业显微镜的大数据和预测分析适用于通过应用技术于大客户服务中心和零售店的收银机来分析客户的另一面。
商业显微镜捕捉所谓的“情感时刻”,用传感器分析客户在接受电话客服的发声,或通过客户的刷卡消费来统计客流量,通过工牌卡来了解客户在于呼叫中心的哪位客服人员沟通。
在零售环境中,商业显微镜可以研究客流量,然后返回数据,帮助优化零售环境的布局。
大数据可以根据与顾客的互动来跟踪客户的行为,以便为企业提供可操作的信息,进而为顾客提供最佳的服务,赢得商业竞争。
实施NFL门票动态价格
大多数和我一样住在华盛顿的Redskins橄榄球队的球迷都非常熟悉人们在橄榄球赛季对于门票定价的投诉和抱怨。而其他地区的球迷对于他们当地的NFL球队在每个赛季的门票定价也充满了各种爱恨。NFL正在使用FICO的大数据和预测分析方法,以确定并实施动态的门票定价策略。
利用大数据和预测分析方法来实施动态定价可能比我们更了解消费者。只是,FICO和NFL才刚刚开始使用案例研究项目阶段。如此规模的大数据和预测分析项目至少需要是在收集了一段时间的客户需求、以及其他方面的消费需求才可以付诸实施。
提高企业溢价认购用户留存率
今天,溢价认购市场面临更多的挑战。因为取消认购是用户在时机成熟时削减预算的第一步。而一家初创型企业ScoutAnalytics正在应用大数据和预测分析,以帮助包括软件即服务(SaaS)、信息服务和数字媒体等类型的企业改善他们的用户留存率。
ScoutAnalytics公司宣称他们在帮助企业提高溢价认购用户留存率方面的营收增加了10%至15%。其可以作为一个数据枢纽,关联到销售配额,帮助销售团队获取更多的经常性收入。
总结
在这篇文章中,我们向您展示了大数据和预测分析如何成为横跨多个行业的非传统的应用的基础技术。尽管频繁的采用大数据和预测分析还是一项挑战,但这些非常规性的特殊的应用技术为我们展示了更好的个人、企业的未来。而在线生活也必将成为今天和未来更大的商业平台的一部分。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09