
大数据和预测分析的非常规性用途
在本文中,威尔•凯利将与我们分享一些关于大数据和预测分析,在多个行业的一些非常规的用途。
我们已经性接触过众多围绕着大数据和预测分析的公约、挑战、目前流行的思维理念、以及商业模式的文章了。然而,除了对于大数据的恐惧、怀疑、不确定性以及对于大数据概念的大肆炒作之外,目前,已经有一些企业开始把大数据分析技术用在一些非常规的领域了。
露天采矿挖掘数据追踪
首先,让我们来看看日立数据系统(HDS)如何利用大数据和预测分析来支持某些大型建设、采矿和交通运输等行业的重工业应用的吧。当我与他们的产品规划副总裁迈克尔•海;软件产品的营销高级主管萨拉•加德纳;以及全球营销的高级副总裁阿西姆•查希尔进行交流时,他们向我概述了大数据和预测分析如何在重型矿山设备上工作的。
这篇由萨拉•加德纳撰写的题为《日立数据机:露天矿数据挖掘》重点讲述了日立是如何利用大数据来支持其露天矿数据挖掘机械工作的。我不是在谈论数据的挖掘,而是说矿产的地下开采。加德纳的文章中说明了一些极端例子:如数据机床推动了大数据和预测分析,进而帮助完成我们很多人都认为是非常规性的业务任务。
一些大数据业内人士将大数据和预测分析的应用程序在重型工业设备和运输系统的运用视为未来整个大数据运用领域增长的一个主要因素。
提高电子商务客户体验
尽管零售商店行业的竞争已然十分激烈了,一些相同的问题也开始延伸到电子商务领域里。一家名为Bloomreach的创业公司旨在利用大数据来提高电子商务的客户体验。这是基于客户的搜索习惯来提供客户专属页面,而不是修改整个网站的用户体验。Bloomreach公司的技术侧重于通过分析产品需求关注内容发现。
Bloomreach公司的首席执行官Rajdedatta向我介绍了该公司如何利用大数据技术来加强电子商务的客户体验。他们的技术人员在大型电子商务网站的后端,使他们能够在保证强大的客户体验的同时,基于客户搜索条件的最佳匹配来定制新产品登陆页面。
虽然将大数据应用程序作为电子商务和客户体验的一部分可能看起来已经平常了。但这为我们指明了三个发展方向。第一个发展方向是大数据将向电子商务的世界的内容战略家、信息建筑师、设计师发起挑战。第二个发展方向是大数据的流畅性将成为以后的电子商务人才的重要要求。第三个,也许是最重要的发展方向是电子商务网站后端的大数据技术将成为在搜索和网上销售竞争中吸引顾客眼球所必须的技术。
收银机和呼叫中心背后的应用分析
可能大数据最为知名的应用领域就是跟踪客户的行为了。然而,日立商业显微镜的大数据和预测分析适用于通过应用技术于大客户服务中心和零售店的收银机来分析客户的另一面。
商业显微镜捕捉所谓的“情感时刻”,用传感器分析客户在接受电话客服的发声,或通过客户的刷卡消费来统计客流量,通过工牌卡来了解客户在于呼叫中心的哪位客服人员沟通。
在零售环境中,商业显微镜可以研究客流量,然后返回数据,帮助优化零售环境的布局。
大数据可以根据与顾客的互动来跟踪客户的行为,以便为企业提供可操作的信息,进而为顾客提供最佳的服务,赢得商业竞争。
实施NFL门票动态价格
大多数和我一样住在华盛顿的Redskins橄榄球队的球迷都非常熟悉人们在橄榄球赛季对于门票定价的投诉和抱怨。而其他地区的球迷对于他们当地的NFL球队在每个赛季的门票定价也充满了各种爱恨。NFL正在使用FICO的大数据和预测分析方法,以确定并实施动态的门票定价策略。
利用大数据和预测分析方法来实施动态定价可能比我们更了解消费者。只是,FICO和NFL才刚刚开始使用案例研究项目阶段。如此规模的大数据和预测分析项目至少需要是在收集了一段时间的客户需求、以及其他方面的消费需求才可以付诸实施。
提高企业溢价认购用户留存率
今天,溢价认购市场面临更多的挑战。因为取消认购是用户在时机成熟时削减预算的第一步。而一家初创型企业ScoutAnalytics正在应用大数据和预测分析,以帮助包括软件即服务(SaaS)、信息服务和数字媒体等类型的企业改善他们的用户留存率。
ScoutAnalytics公司宣称他们在帮助企业提高溢价认购用户留存率方面的营收增加了10%至15%。其可以作为一个数据枢纽,关联到销售配额,帮助销售团队获取更多的经常性收入。
总结
在这篇文章中,我们向您展示了大数据和预测分析如何成为横跨多个行业的非传统的应用的基础技术。尽管频繁的采用大数据和预测分析还是一项挑战,但这些非常规性的特殊的应用技术为我们展示了更好的个人、企业的未来。而在线生活也必将成为今天和未来更大的商业平台的一部分。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23