
大数据和预测分析的非常规性用途
在本文中,威尔•凯利将与我们分享一些关于大数据和预测分析,在多个行业的一些非常规的用途。
我们已经性接触过众多围绕着大数据和预测分析的公约、挑战、目前流行的思维理念、以及商业模式的文章了。然而,除了对于大数据的恐惧、怀疑、不确定性以及对于大数据概念的大肆炒作之外,目前,已经有一些企业开始把大数据分析技术用在一些非常规的领域了。
露天采矿挖掘数据追踪
首先,让我们来看看日立数据系统(HDS)如何利用大数据和预测分析来支持某些大型建设、采矿和交通运输等行业的重工业应用的吧。当我与他们的产品规划副总裁迈克尔•海;软件产品的营销高级主管萨拉•加德纳;以及全球营销的高级副总裁阿西姆•查希尔进行交流时,他们向我概述了大数据和预测分析如何在重型矿山设备上工作的。
这篇由萨拉•加德纳撰写的题为《日立数据机:露天矿数据挖掘》重点讲述了日立是如何利用大数据来支持其露天矿数据挖掘机械工作的。我不是在谈论数据的挖掘,而是说矿产的地下开采。加德纳的文章中说明了一些极端例子:如数据机床推动了大数据和预测分析,进而帮助完成我们很多人都认为是非常规性的业务任务。
一些大数据业内人士将大数据和预测分析的应用程序在重型工业设备和运输系统的运用视为未来整个大数据运用领域增长的一个主要因素。
提高电子商务客户体验
尽管零售商店行业的竞争已然十分激烈了,一些相同的问题也开始延伸到电子商务领域里。一家名为Bloomreach的创业公司旨在利用大数据来提高电子商务的客户体验。这是基于客户的搜索习惯来提供客户专属页面,而不是修改整个网站的用户体验。Bloomreach公司的技术侧重于通过分析产品需求关注内容发现。
Bloomreach公司的首席执行官Rajdedatta向我介绍了该公司如何利用大数据技术来加强电子商务的客户体验。他们的技术人员在大型电子商务网站的后端,使他们能够在保证强大的客户体验的同时,基于客户搜索条件的最佳匹配来定制新产品登陆页面。
虽然将大数据应用程序作为电子商务和客户体验的一部分可能看起来已经平常了。但这为我们指明了三个发展方向。第一个发展方向是大数据将向电子商务的世界的内容战略家、信息建筑师、设计师发起挑战。第二个发展方向是大数据的流畅性将成为以后的电子商务人才的重要要求。第三个,也许是最重要的发展方向是电子商务网站后端的大数据技术将成为在搜索和网上销售竞争中吸引顾客眼球所必须的技术。
收银机和呼叫中心背后的应用分析
可能大数据最为知名的应用领域就是跟踪客户的行为了。然而,日立商业显微镜的大数据和预测分析适用于通过应用技术于大客户服务中心和零售店的收银机来分析客户的另一面。
商业显微镜捕捉所谓的“情感时刻”,用传感器分析客户在接受电话客服的发声,或通过客户的刷卡消费来统计客流量,通过工牌卡来了解客户在于呼叫中心的哪位客服人员沟通。
在零售环境中,商业显微镜可以研究客流量,然后返回数据,帮助优化零售环境的布局。
大数据可以根据与顾客的互动来跟踪客户的行为,以便为企业提供可操作的信息,进而为顾客提供最佳的服务,赢得商业竞争。
实施NFL门票动态价格
大多数和我一样住在华盛顿的Redskins橄榄球队的球迷都非常熟悉人们在橄榄球赛季对于门票定价的投诉和抱怨。而其他地区的球迷对于他们当地的NFL球队在每个赛季的门票定价也充满了各种爱恨。NFL正在使用FICO的大数据和预测分析方法,以确定并实施动态的门票定价策略。
利用大数据和预测分析方法来实施动态定价可能比我们更了解消费者。只是,FICO和NFL才刚刚开始使用案例研究项目阶段。如此规模的大数据和预测分析项目至少需要是在收集了一段时间的客户需求、以及其他方面的消费需求才可以付诸实施。
提高企业溢价认购用户留存率
今天,溢价认购市场面临更多的挑战。因为取消认购是用户在时机成熟时削减预算的第一步。而一家初创型企业ScoutAnalytics正在应用大数据和预测分析,以帮助包括软件即服务(SaaS)、信息服务和数字媒体等类型的企业改善他们的用户留存率。
ScoutAnalytics公司宣称他们在帮助企业提高溢价认购用户留存率方面的营收增加了10%至15%。其可以作为一个数据枢纽,关联到销售配额,帮助销售团队获取更多的经常性收入。
总结
在这篇文章中,我们向您展示了大数据和预测分析如何成为横跨多个行业的非传统的应用的基础技术。尽管频繁的采用大数据和预测分析还是一项挑战,但这些非常规性的特殊的应用技术为我们展示了更好的个人、企业的未来。而在线生活也必将成为今天和未来更大的商业平台的一部分。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07