京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据自动挖掘”才是现在这些大数据的真正意义
现在大数据火得不行,几乎人人都在说大数据,但到底什么是大数据,恐怕没有多少人知道,鱼目混珠的人太多。
大数据不是指很多很多数据。
所以不是存储了很多数据就是在搞大数据了,因为“大数据”只是个简称,说全一点应是“大数据挖掘”,没经过挖掘的大数据只是没有开采出来的原油,一点用处都没有。
大数据也不是指一般意义上的数据挖掘。
有很多人以前是搞数据分析或数据挖掘的,当《大数据时代》这本书一问世、大数据开始火的时候,他们摇身一变就成了搞大数据的专家了。如果真是这样,就根本没必要提大数据这事儿,因为它本来就一直存在着,只不过换个说法。就好像我们没必要今天突然提出个说法“饮H2O”来代替“喝水”.嗯,对,那叫玩概念。
“大数据挖掘”其实还没有说全,再说完整点,应该是“大数据自动挖掘”.
以前的数据分析或挖掘,是指人通过数据去进行分析,挖掘出一些规律性的东西以供以后使用。
但面对大数据,由于不光是数据量太大,而且往往包括数据的维度也很多,人已不可能去处理这样海量的数据,甚至是如何处理都不知道,这时必须用电脑来自动处理,挖掘出数据中的规律。
但是目前电脑还不能像人那样进行严密、复杂的逻辑思维,因此它们也无法用我们人的思维模式去分析数据,人可能只要较少的数据就能分析出其中的规律,数据多了反而没有办法,所以我们人类都是采用抽样分析。
电脑则正好相反,无法根据少量数据去分析出规律,但它有一个优势,那就是运算速度非常快,因此有可能处理海量数据以后找出其中的规律。
由于电脑还不能进行复杂的逻辑思维,所以它的处理方法很简单,就是进行简单的统计运算,也就是“硬算”,统计出在什么情况会出什么样的结果,然后当类似的情况再出现时,它就会告诉我们可能会出现某种结果了。
由这里也可看大数据的另一个特点,即大数据主要是进行预测,告诉你未来将会出现什么样的结果。而不是只分析出过去的走势和现状,未来还是要由人去判断。
为什么这种简单的方法会有效呢?这就回到“大数据”这个词上来了,那就是因为数据量非常大,统计出来的结果就往往是正确的。
大家一定都知道这个例子,扔硬币来统计正、反面出现的机率,如果只扔10次,也许正面出现9次,以此来得出结论肯定是错的;但如果你扔10万次、100万次,甚至更多,那你统计出来的结果基本是正确的,正、反面出现的机率一定是各50%.
是的,大数据自动挖掘就是依据这一原理。
这里没有严密的因果分析,不是通过数据分析出原因再推导出结果;而是通过统计知道有这样的情况,一般就会有这样的结果,也即现象与结果的相关性。所以大数据就有一个显着的特点,只关心相关性,不关心因果;用更通俗的话说就是“只知道结果,不知道原因”.
这实际是人们根据电脑的优势,找出了一个全新的数据分析、挖掘方式,与传统的方式完全不同,所以传统那些搞数据分析或挖掘的专家并不能称作为搞大数据的。
不过你一定要小心,冷不防你就会碰上一个这样的专家,他们甚至可能是来自某名牌大学的知名教授之类。进到书店你也会看到许多讲大数据的书,封面无一例外都有很大的“大数据”三个字,但其实都是在讲传统、人工的数据分析方式,和大数据一点边都不沾。当然,这里不包括《大数据时代》这本书。
另外,传统搞神经网络、深度学习等人工智能的,也基本不算大数据,因为这里面还是很多人为因素,包括建模型、对程序进行训练等,这里人仍需要对所分析的业务逻辑非常熟悉才能做,目前这种方法也难以达到实用的效果。而大数据只是让电脑根据一些简单却巧妙的算法,去进行大量数据的统计,找出连人都想不到的规律。大数据在这里基本是与业务逻辑无关的,人不需要知道这是什么业务,比如分析移动互联网行业的数据,他不需要知道这个行业的来龙去脉、当前状况等,他只需要对大量历史数据进行统计,就能够找出其未来的走势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27