
“大数据自动挖掘”才是现在这些大数据的真正意义
现在大数据火得不行,几乎人人都在说大数据,但到底什么是大数据,恐怕没有多少人知道,鱼目混珠的人太多。
大数据不是指很多很多数据。
所以不是存储了很多数据就是在搞大数据了,因为“大数据”只是个简称,说全一点应是“大数据挖掘”,没经过挖掘的大数据只是没有开采出来的原油,一点用处都没有。
大数据也不是指一般意义上的数据挖掘。
有很多人以前是搞数据分析或数据挖掘的,当《大数据时代》这本书一问世、大数据开始火的时候,他们摇身一变就成了搞大数据的专家了。如果真是这样,就根本没必要提大数据这事儿,因为它本来就一直存在着,只不过换个说法。就好像我们没必要今天突然提出个说法“饮H2O”来代替“喝水”.嗯,对,那叫玩概念。
“大数据挖掘”其实还没有说全,再说完整点,应该是“大数据自动挖掘”.
以前的数据分析或挖掘,是指人通过数据去进行分析,挖掘出一些规律性的东西以供以后使用。
但面对大数据,由于不光是数据量太大,而且往往包括数据的维度也很多,人已不可能去处理这样海量的数据,甚至是如何处理都不知道,这时必须用电脑来自动处理,挖掘出数据中的规律。
但是目前电脑还不能像人那样进行严密、复杂的逻辑思维,因此它们也无法用我们人的思维模式去分析数据,人可能只要较少的数据就能分析出其中的规律,数据多了反而没有办法,所以我们人类都是采用抽样分析。
电脑则正好相反,无法根据少量数据去分析出规律,但它有一个优势,那就是运算速度非常快,因此有可能处理海量数据以后找出其中的规律。
由于电脑还不能进行复杂的逻辑思维,所以它的处理方法很简单,就是进行简单的统计运算,也就是“硬算”,统计出在什么情况会出什么样的结果,然后当类似的情况再出现时,它就会告诉我们可能会出现某种结果了。
由这里也可看大数据的另一个特点,即大数据主要是进行预测,告诉你未来将会出现什么样的结果。而不是只分析出过去的走势和现状,未来还是要由人去判断。
为什么这种简单的方法会有效呢?这就回到“大数据”这个词上来了,那就是因为数据量非常大,统计出来的结果就往往是正确的。
大家一定都知道这个例子,扔硬币来统计正、反面出现的机率,如果只扔10次,也许正面出现9次,以此来得出结论肯定是错的;但如果你扔10万次、100万次,甚至更多,那你统计出来的结果基本是正确的,正、反面出现的机率一定是各50%.
是的,大数据自动挖掘就是依据这一原理。
这里没有严密的因果分析,不是通过数据分析出原因再推导出结果;而是通过统计知道有这样的情况,一般就会有这样的结果,也即现象与结果的相关性。所以大数据就有一个显着的特点,只关心相关性,不关心因果;用更通俗的话说就是“只知道结果,不知道原因”.
这实际是人们根据电脑的优势,找出了一个全新的数据分析、挖掘方式,与传统的方式完全不同,所以传统那些搞数据分析或挖掘的专家并不能称作为搞大数据的。
不过你一定要小心,冷不防你就会碰上一个这样的专家,他们甚至可能是来自某名牌大学的知名教授之类。进到书店你也会看到许多讲大数据的书,封面无一例外都有很大的“大数据”三个字,但其实都是在讲传统、人工的数据分析方式,和大数据一点边都不沾。当然,这里不包括《大数据时代》这本书。
另外,传统搞神经网络、深度学习等人工智能的,也基本不算大数据,因为这里面还是很多人为因素,包括建模型、对程序进行训练等,这里人仍需要对所分析的业务逻辑非常熟悉才能做,目前这种方法也难以达到实用的效果。而大数据只是让电脑根据一些简单却巧妙的算法,去进行大量数据的统计,找出连人都想不到的规律。大数据在这里基本是与业务逻辑无关的,人不需要知道这是什么业务,比如分析移动互联网行业的数据,他不需要知道这个行业的来龙去脉、当前状况等,他只需要对大量历史数据进行统计,就能够找出其未来的走势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29