京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的本质是虚拟中介,和实体经济相生相伴
互联网发展的一个重要的特点,就是很多线下的业务被放在了线上,互联网本身具有去载体化的天然特性,正是因为有这样的特性,所以数据沉淀就显得特别重要,若是没有这个数据沉淀的优势,互联网去载体化就不可能实现。
以往传统的线下业务其实也沉淀了大量的数据,只不过这种数据的负载形式是物理的,传统的统计形式更多的依赖人工,所以这些沉淀的数据一直在沉睡而没有被唤醒,因为人工的方式根本没法做到。互联网充当了唤醒这座数据金矿的重要角色,使得人类第一次对数据的效用重视起来,所以大数据的概念风靡当下,不能不说这是互联网带来的意外之喜。
互联网将传统线下业务搬到了线上,于是这种大数据的形式就凸现出来,因为既然互联网具有去中介化的天然特性,那么这种中介化的价值信息就附着在海量的数据中——除了数据,互联网的价值链就显得没那么有价值了,所以从某种程度上说,互联网时代的中介化,就是沉淀的海量数据形式。这和传统的物理中介当然是两个不同的概念,只不过互联网时代,很多传统的物理中介都受到了虚拟中介的冲击。本质上,这只是中介身份的一种转换,而不是物理中介被消灭了。
例如,银行、证券、交易所等金融机构都是物理中介,其业务所积累起来的数据非常可观,当这些数据被海量的搬到线上的时候,我们并不能简单的认为这些金融机构被消灭了,而应该认识到,这些金融机构的身份,是以搬到了线上的海量数据为新的虚拟中介形式的,物理中介反而成了虚拟中介的生产源。这些生产源的本质属性是不变的,例如,金融方面,其股权、债券、信托等金融核心功能不变,其所涵盖的契约也是不变的,所面临的金融风险、所面对的监管的基础都是不变的,这种本质属性的固定,并没有在互联网时代因互联网的迅猛发展而发生改变。当我们在分析互联网对传统行业的冲击时,往往用去中介化来描述互联网对传统行业的冲撞,但是我们应该认识到,这种去中介化,并不是消灭了物理中介,而是摆脱了物理中介,实现了和以大数据为依托所形成的虚拟中介的联姻。
所以,大数据的形式其实是一种互联网时代的虚拟中介,它是从传统的物理中介中衍生出来的,从此,市场的生态环境发生了变化:一种线上的虚拟中介,一种线下的物理中介。整个市场被重新构造起来,线上线下两种生态共同支撑着当前的互联网时代走向一个较为繁荣的阶段。
迈尔·舍恩伯格(《大数据时代》一书的作者)认为,大数据的一个重要特点,就是事物之间具有相关性,而因果性倒是处于其次。
其实,这种观点也不新鲜,因为在统计学上,要证明两个事物之间具有因果性,前提条件是这两种事物要具有一定的关联性,即,事物之间的关联性是求证它们因果性的必要条件。所以在某种程度上,舍恩伯格这种观点是将事物之间的相关性和因果性分开看了。从前面的分析我们可以得知,海量的数据并不会无缘无故的产生,线上的大数据中介是传统的物理中介衍生出来的,可以说没有线下的物理中介经过产业链的整合,从而将这些数据整合到线上,那么线上的虚拟中介是不会产生的,所以,数据之间绝对不仅仅是只有联系性那么简单,数据之间的因果性才最终指导着企业如何经营的极为重要的因素。
大数据的形式作为新型的中介形式,本质上还是伴随着互联网的迅猛发展而产生的,这是一种有别于传统中介形式的新型中介,并不能独立于实体经济而孤立存在,没有实体经济的最终繁荣,互联网只能呈现出较为繁荣的假象,而最终会变成没有根基的浮萍,所以,只有线上线下生态同步发展,或才是一个市场较为成熟的表现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26