
唤醒“沉睡”的科学大数据 蕴藏巨大价值
大数据时代,正在以一种不可阻挡的态势到来。
近日,国务院印发并对外公布《关于促进大数据发展的行动纲要》,提出要大力发展大数据产业。这意味着国家层面对于大数据的重要性有着清醒的认识。同时,大数据相关产业也必然将迎来新的发展高峰期。
作为大数据的一个分支,科学大数据无疑有着独特性。来自科研领域的大数据如何走向社会化?科学家累积的数据能否成为产品?如何加速科学大数据的转化?在日前举办的2015科学数据大会上,与会专家就此进行了探讨。
科学数据蕴藏巨大价值
大数据时代的到来,似乎超出人们的想象。而数据累积与增长的速度,也似乎超出人们的预估。
中科院院士郭华东介绍说,谷歌每天的运算数据是20PB(1PB为1拍字节,等于250字节),欧洲核子中心每天产生的数据量约有15PB,而全球变化数据量在2030年预计达到350PB。
科学数据蕴藏着巨大价值。例如,从海洋卫星、气象卫星、资源卫星等获得的空间地球大数据,在保护生态环境、评估土地资源、预防自然灾害等方面起着重要作用。
再比如,中科院寒旱所在我国寒区旱区开展了长达数十年的研究,并由此积累了大量数据。这些数据对于政府、企业有着巨大价值。
中科院寒旱所寒区旱区科学数据中心副主任张耀南介绍说,目前寒旱所部署在全国的观测点有5万多个,覆盖国土面积的近2/3,在寒旱区冰川、冻土、积雪、沙漠、高原大气、生态环境、水文土壤及内陆河流域等方面积累了相当可观的数据量。但“如何让科学数据社会化,是一个需要解决的问题,也亟待探索”。
国际数据公司的统计显示,中国目前拥有的数据量占全球的14%,但数据利用率不到0.4%。大量数据仍在“沉睡”,未能充分发挥自身价值。
绕不开的障碍
对于科学数据的社会化,科学家不是没有做过努力。比如,中科院遥感地球所成立了中科遥感信息技术有限责任公司(以下简称中科遥感),旨在加速推进中科院遥感与空间信息技术成果的转化与产业化,并向外界提供大数据相关服务。
然而,中科院遥感地球所研究员、中科遥感总裁任伏虎表示,出于行业保护、政策因素等原因,目前科学数据的开放程度还不够,这影响了其社会化进程。
此外,虽然科学数据大多由科学家提供,但科学数据的产生与累积离不开国家科技计划、基金项目的支持。这就导致了一个现实问题:科学数据一旦开放共享产生价值,其获得收入的分成情况不好处理。钱到底是给科学家个人,还是给政府,是一个令人头痛的问题。而科学家一旦不能获得适当收入,其积极性也会受到影响。
长期在中科院从事信息化工作的研究员吴钰表示,目前材料基因组研究已经获得一定程度的进展,这就是科学数据开放利用的成果。但不能因此忘记开放中的风险问题,“信息安全问题不能忽视,一些数据的泄漏会产生严重后果。不过,我们也无须过分害怕这个问题”。
主动拥抱市场
科学数据的社会化无疑是大势所趋。那么,怎样为其提供“加速度”呢?
“毫无疑问,科学数据要主动拥抱市场。科研人员提供的数据要瞄准企业需求。”任伏虎表示,同时要形成良好的市场机制,让科学家获得收益。
复旦大学教授朱扬勇也表示,只要社会有需求,科学数据就可以交易;只要交易,就能产生价值。至于科学家的收益问题,可参照专利转让的做法,通过技术入股方式,让科学家、机构从企业获得合理报酬。
吴钰则认为,要加速推动科学数据为创新驱动发展提供动力,让科学数据在智能制造、生物技术等领域大有可为。“至于让科学数据的价值得到体现,在政府层面,可考虑建立相应的政府采购制度,让政府购买服务。”
张耀南表示,在科学数据社会化的具体过程中,专业人才不能缺位。科学数据的来源相对比较狭窄,社会各界此前较少了解科学数据的社会、经济效应。因此,需要专门人才进行科学数据社会化的推介工作。“总之,必须重视科学数据的科普与营销工作。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29