
唤醒“沉睡”的科学大数据 蕴藏巨大价值
大数据时代,正在以一种不可阻挡的态势到来。
近日,国务院印发并对外公布《关于促进大数据发展的行动纲要》,提出要大力发展大数据产业。这意味着国家层面对于大数据的重要性有着清醒的认识。同时,大数据相关产业也必然将迎来新的发展高峰期。
作为大数据的一个分支,科学大数据无疑有着独特性。来自科研领域的大数据如何走向社会化?科学家累积的数据能否成为产品?如何加速科学大数据的转化?在日前举办的2015科学数据大会上,与会专家就此进行了探讨。
科学数据蕴藏巨大价值
大数据时代的到来,似乎超出人们的想象。而数据累积与增长的速度,也似乎超出人们的预估。
中科院院士郭华东介绍说,谷歌每天的运算数据是20PB(1PB为1拍字节,等于250字节),欧洲核子中心每天产生的数据量约有15PB,而全球变化数据量在2030年预计达到350PB。
科学数据蕴藏着巨大价值。例如,从海洋卫星、气象卫星、资源卫星等获得的空间地球大数据,在保护生态环境、评估土地资源、预防自然灾害等方面起着重要作用。
再比如,中科院寒旱所在我国寒区旱区开展了长达数十年的研究,并由此积累了大量数据。这些数据对于政府、企业有着巨大价值。
中科院寒旱所寒区旱区科学数据中心副主任张耀南介绍说,目前寒旱所部署在全国的观测点有5万多个,覆盖国土面积的近2/3,在寒旱区冰川、冻土、积雪、沙漠、高原大气、生态环境、水文土壤及内陆河流域等方面积累了相当可观的数据量。但“如何让科学数据社会化,是一个需要解决的问题,也亟待探索”。
国际数据公司的统计显示,中国目前拥有的数据量占全球的14%,但数据利用率不到0.4%。大量数据仍在“沉睡”,未能充分发挥自身价值。
绕不开的障碍
对于科学数据的社会化,科学家不是没有做过努力。比如,中科院遥感地球所成立了中科遥感信息技术有限责任公司(以下简称中科遥感),旨在加速推进中科院遥感与空间信息技术成果的转化与产业化,并向外界提供大数据相关服务。
然而,中科院遥感地球所研究员、中科遥感总裁任伏虎表示,出于行业保护、政策因素等原因,目前科学数据的开放程度还不够,这影响了其社会化进程。
此外,虽然科学数据大多由科学家提供,但科学数据的产生与累积离不开国家科技计划、基金项目的支持。这就导致了一个现实问题:科学数据一旦开放共享产生价值,其获得收入的分成情况不好处理。钱到底是给科学家个人,还是给政府,是一个令人头痛的问题。而科学家一旦不能获得适当收入,其积极性也会受到影响。
长期在中科院从事信息化工作的研究员吴钰表示,目前材料基因组研究已经获得一定程度的进展,这就是科学数据开放利用的成果。但不能因此忘记开放中的风险问题,“信息安全问题不能忽视,一些数据的泄漏会产生严重后果。不过,我们也无须过分害怕这个问题”。
主动拥抱市场
科学数据的社会化无疑是大势所趋。那么,怎样为其提供“加速度”呢?
“毫无疑问,科学数据要主动拥抱市场。科研人员提供的数据要瞄准企业需求。”任伏虎表示,同时要形成良好的市场机制,让科学家获得收益。
复旦大学教授朱扬勇也表示,只要社会有需求,科学数据就可以交易;只要交易,就能产生价值。至于科学家的收益问题,可参照专利转让的做法,通过技术入股方式,让科学家、机构从企业获得合理报酬。
吴钰则认为,要加速推动科学数据为创新驱动发展提供动力,让科学数据在智能制造、生物技术等领域大有可为。“至于让科学数据的价值得到体现,在政府层面,可考虑建立相应的政府采购制度,让政府购买服务。”
张耀南表示,在科学数据社会化的具体过程中,专业人才不能缺位。科学数据的来源相对比较狭窄,社会各界此前较少了解科学数据的社会、经济效应。因此,需要专门人才进行科学数据社会化的推介工作。“总之,必须重视科学数据的科普与营销工作。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07