京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在高校教育信息化中的应用探究
随着互联网技术的迅速发展,大数据带来的信息风暴正在改变我们的生活、工作和思维。那么,当这场风暴席卷高校的时候,到底会给高校教育信息化建设带来哪些变革呢?高校是数据生产大户,中国高校数量多而且规模大,万人以上的大学非常多,在高校里上学的学生从招生、学籍、选课、成绩、饭堂、活动等方面产生大量的数据。在大数据时代,只有用好这些数据,才能更好地帮助教学、科研、学生管理等工作,大大提高高校的信息化水平。
1.教学评估
大数据分析可以应用于教育中的数据挖掘。目前教育机构已经积累了大量数据,使研究者有更多的新机会探究学生学习环境和状态。通过监测这些信息,形成教育大数据库,全面掌握学生学习的全过程,发现学生的学习常态。通过数据流的变动分析,总结教育规律、调整教学内容和教学模式,客观全面地评价学生学习成果和自身的教学成果。
2.个体分析
对于教育领域来说,大数据的应用让研究个体学习也成为了可能,让专门培养和针对性训练成为可能。通过学校数据中心分析学生的各类信息,如考试成绩的变化、借阅图书的种类、一卡通消费额度等信息,综合性地分析判断学生的状态。根据分析结果,对于不同的学生因地制宜地制定相应的教学模式、培养方案。另外,也可以借助学校的微信公众平台为学生推送其感兴趣的资讯信息。
3.舆情预测
学生中存在的问题和困惑,往往最先通过网络显露和传播。如果学生的意见和建议得不到重视或延误解决,就可能在网上形成炒作,个体情绪可能传染到群体,演变为群体的不满情绪,使网络成为舆论的放大器。通过分析学生网络访问轨迹实现积累监测,利用其需求、行为、动向等众多数据资源加强舆情分析和预警。另外,通过对学生数据的追踪和分析,能够发现情绪不稳定的学生或者受不法分子蛊惑的学生,及时将有可能发生的悲剧扼杀在摇篮里。因此,精准的预测分析能提升舆情管理工作水平,提高校园管理水平。
总之,大数据的教育应用可以为学生提供一个量身定做的个性化学习环境、一个灵活调整的可控教育系统、一个教育问题早期预警系统,为教师了解学生学习途径和方法提供了崭新的、可视的、可量化的新手段。
四、大数据在高校教育信息化应用中的挑战
1.从技术层面来看
(1)数据源的可用性
关于大数据的一个普遍观点是,数据自己可以说明一切,数据自身就是事实。但实际情况是,如果不仔细甄别,数据也会欺骗,就像人们有时会被自己的双眼欺骗一样。高质量数据的获取是确保信息可用性的重要前提。[5]高校数据的来源多种多样,包括各职能部门的基本业务数据、教学资源的多媒体数据、使用网络的行为数据、无线网络感知的位置数据等。数据模态千差万别,如关系数据、标量数据、图数据、流数据、XML数据、矢量数据等。既有重复性数据,又有冗余性数据,质量参次不齐,加工整理困难。这些校园化数据是否可用给大数据在高校中的推进带来极大的挑战。
(2)数据融合的可行性
众所周知,数据不融合就发挥不出数据的潜在价值,高校大数据面临的一个重要问题就是数据融合。作为高等院校,大数据的融合应该走在前列,必须彻底打通数据孤岛,将各个业务充分整合。然而,由于传统的业务系统缺乏长期规划,采用的技术包罗万象。据调研发现,目前高校所采用的数据库包括Oracle、Sybase、Microsoft SQL Server、Mysql、Visual FoxProd等。有些学校或部门甚至没有数据库,而是采用Excel管理数据。在这种基础上实现数据的有效融合,形成高质量的大数据,对于融合技术是一个重要的挑战。
(3)数据分析的持续性
教育的规律有时很难理清,成功的个体也未必能够简单复制,评价教育本身的指标都有一定程度的缺陷,需要几年甚至更长期的监测和不断的更正。因此,高校中的大数据分析,不仅仅是横向的对比,如职能部门间、兄弟院校间,更需要纵向历史数据的对比。无论是数据收集、数据清洗还是数据挖掘的模型,都需要随着每天产生的大量详实而琐碎的数据信息进行调整和修正,这也是一个不小的挑战。
(4)数据挖掘的复杂性
大数据分析无疑是整个大数据时代的核心所在,因为大数据的价值就产生于数据分析过程中。在高校大数据的应用中,无论是做个性分析还是舆情预测,都需要构建特定的挖掘模型。教育行业因为其特殊性,传统的分析技术如数据挖掘、机器学习、统计分析等并不能完全满足高校大数据分析的需求,因此,需要在数据预处理、算法模型、评价指标等方面做出调整。当然,数据挖掘的复杂性,不仅是高校大数据所面临的挑战,也是整个大数据领域的巨大挑战。
2.从实施层面来看
(1)数据共享意识
大数据时代需要海量数据作为基础,高校中的大数据,其中很大一部分来源于各职能部门。而现状是大量的数据分布在各个互相独立的职能部门中,甚至大量的信息资源成为了个别部门的私有财产。造成这种状况的原因一方面是因为年代久远,数据整理工作难度较大、工作优先级较低;另一方面是业务部门并不清楚哪些数据是可以被分享的、哪些数据是不能被分享的。归根结底,还是资源分享的意识不够。然而,信息资源只有在相互流动、形成规模效应的前提下才能够发挥出最大的价值,因此,还需要加强高校的数据共享意识。
(2)人员配备与组织结构
高校内部对于各职能部门间信息资源规划缺位,导致了建设进度不同、资源投入有差距、各部门各显神通一窝蜂建设,增加了数据资源共享共用的壁垒。在大力推行教育信息化之前,很多学校并没有专门的信息化部门,技术人员储备不足,甚至没有。高校大数据的推行需要一批既懂得相关技术,又熟悉业务流程的技术人员。人才的匮乏也是非常不利的一点因素——相比于商业环境下对研究实效的追逐,教育研究的缓慢与空洞显得相形见绌。
(3)个人隐私保护
教育说到底是一个交互的过程,交互的内容收集一定程度上与隐私等是矛盾的。目前大数据的发展仍然面临着许多问题,安全与隐私问题是人们公认的关键问题之一,如教师的工资收入,学生的生活习惯、好友联络情况、阅读习惯、检索习惯等。多项案例实际说明,即使无害的数据被大量收集后,也会暴露个人隐私。如何做到大数据采集与用户隐私保护的平衡是一个很重要的研究课题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27