京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据应用必要条件:数据真实和准确
《哈佛商业评论》最新一期的封面上,一位勇士正挥舞着长鞭,试图驾驭大数据这匹“烈马”。的确,大数据的重要性已是公认,可你有没有想过真正想获取大数据价值的人能以何为鞭?仅有鞭在手是否足矣?
“IBM对大数据有自己独到的观点。”IBM软件集团大中华区业务分析洞察及智慧地球解决方案总经理卜晓军在主题为“大数据·大洞察·大未来”的年度大数据战略发布会上的发言举重若轻。的确,IBM严谨的智慧分析洞察方法论、完善的大数据平台解决方案以及广泛深刻的行业落地实践,让IBM有底气宣布即将驯服大数据,IBM的大数据平台或许就是企业正在苦苦寻找的“长鞭”和“缰绳”。
对付大数据4个V
大数据的3V特点(Volume、Velocity、Variety)已无需赘言——“过去两年里所产生的数据量占到人类有史以来所积累的数据总量的90%”,“每秒钟有500万笔交易发生,每天有5亿个通话记录产生”,“80%的数据增长来源于图片、视频和文档”。这就意味着在应对大数据时,要集成和管理高容量、即时、多类型和分散来源的数据。
“这一切只是开始。”卜晓军补充道,“3V只是对大数据最基本特征的归纳,实际上,大数据向外延伸的涵义很丰富。”IBM就归纳总结了第4个V——Veracity(真实和准确),为什么第4个V足以与前3个V相提并论?“这是因为,只有真实而准确的数据才能让对数据的管控和治理真正有意义。”随着社交数据、企业内容、交易与应用数据等新数据源的兴起,传统数据源的局限性被打破,企业愈发需要有效的信息治理以确保其真实性及安全性。
如何充分应对大数据的4V特性,成为了想获取大数据深层价值者面前的一道难题。基于“3A5步”动态路线图的大数据战略再次体现了IBM完整的软件体系架构和综合能力。
“单独谈大数据没有意义,正如认为Hadoop足以解决大数据所有问题一样过于片面。”IBM软件集团大中华区信息管理软件总经理卢伟权强调,“大数据应该渗透到企业的IT架构中,这就要求大数据平台具备在信息原有的形式上进行进一步的分析、使所有的数据具有可视性并被有效用来分析、为新的分析应用开发更加有效的环境、优化与合理分配工作量、安全与治理等能力,兼容企业级的可用性、管理性、安全性和集成性。”
Hadoop缺乏数据管理的能力,IBM将Hadoop整合到大数据平台中并结合已有的产品,由此以四大核心能力Hadoop系统、流计算、数据仓库和信息整合与治理为支点提供端到端的大数据解决方案。
卢伟权总结道:“IBM将数据库领域里多年积累的经验,和对用户需求的高度考量融合到大数据平台中,通过‘增强’的理念把大数据解决方案有机整合到客户现有的数据平台上,保护客户现有的投资,在不摈弃传统数据仓库的前提下,通过信息整合和治理等工具,为客户创造效率和成本的最佳平衡。”
落脚点是行业应用
不落实到行业,不出示行业应用,人们对大数据的感知仍然会停留在“它仅仅是一个技术趋势”的肤浅层面。只有让大数据成为新的解决业务问题的手段,才能打破大数据怀疑论者的疑虑,才能说明大数据可用——正如《哈佛商业评论》英文版总编辑阿迪·伊格内休斯所言,“大数据就在那里,关键看它如何为你的公司所用”。
“端到端的总体技术,包括信息治理和集成、大数据管理、实时分析,最后的落脚点是行业应用。”IBM中国开发中心信息管理首席架构师及大数据架构师陈奇说明技术服务于商业是终极追求。
行业应用场景是IBM大数据策略最有力的说客,在数个主要行业中应对大数据的相关场景和实践经验的分享让其优势不言自明。
伴随着制造业演变为“供应链核心模式”,IBM软件集团制造事业群总经理萧丁瑞希望制造业企业在IBM的帮助下实现供应链的可见性,以快速有效的方式处理供应链环节中的数据,弱化需求与供给之间的波动传导,达到产销协同。
IBM软件集团大中华区架构师总经理林旭认为,随着竞争不断激化,实时数据处理和客户行为预测成为运营商抢占的高地。IBM有能力帮助电信公司整理分散数据,管理动态数据,实时获取用户行为分析,增强客服效率和业务推送精准度。
“在金融行业中,客户数据是最珍贵的,这就决定了大数据平台必须是对传统数据仓库的补充和增强。”IBM软件集团大中华区银行业解决方案高级顾问陈剑指出,“此外,金融行业除了对于用户行为预测和实时处理等需求之外,还面临着风险和欺诈的巨大挑战。”IBM大处理解决方案可建立风险模型,通过实时匹配交易行为模型,对风险和欺诈进行监控,并补充和增强原有传统数据仓库中客户档案和信息。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20