
互联网征信等大数据应用很大一部分还是讲故事
如果说马云构建的金融帝国是一个大家族,那么每一条业务线都可能成为“野孩子”。
最近“摊上事”的则是刚刚起步几个月的征信业务。近日有媒体报道称,央行近日叫停了蚂蚁金服旗下芝麻信用多个营销活动,包括与首都机场快速安检通道合作。不过蚂蚁金服和芝麻信用等方面很快辟谣,称并未收到央行通知,该公司还表示,所谓转账等方式提高芝麻信用分更是无稽。
否认被叫停
今年1月份,央行首次批准8家企业准备个人征信工作。
包括阿里、腾讯、拉卡拉等互联网公司,成为首批试点幸运儿。值得注意的是,相比其他几家,阿里在个人征信服务方面更是十分活跃,除了可视化的“芝麻信用分”产品外,还与神州租车、一嗨租车、阿里旅行、网易花田等一系列第三方尝试商业化合作,涉及租车、交友、网购、住宿等多个领域。尤其是与支付宝合作,更使得“芝麻信用”成为类余额宝网民话题。
不过最近芝麻信用在机场、校园等场景一系列营销活动,也遭遇了部分媒体质疑。财新援引接近央行消息人士称,“芝麻信用机场快速安检通道被叫停”,此外,还有业内人士质疑,用户可以通过互相划款提高芝麻信用分。
“我们没有收到任何监管叫停通知,”9月24日上午芝麻信用发布声明辟谣,称芝麻信用快速安检通道将面向信用分750以上用户继续开放。声明还提道,芝麻信用公测期间,“一直与监管保持良好沟通。”
记者注意到,芝麻信用当天上午还推送了这一服务的消息通知。消息显示,芝麻分在750以上用户可以走首都机场CIP安检通道(国内快速安检通道),活动期限为9月15日至10月14日,具体时间为每天6:30至20:30。
据了解,自1月份开始“准备工作”之后,蚂蚁金服先是向部分用户开放测试,随后在6月份开放全国范围公测。公测期间,芝麻信用启动了无人超市、大学生信用节、芝麻信用快速安检通道等活动,不过该公司并未透露目前参与芝麻信用用户规模。
按照芝麻信用分可视化的结构,其构建目前呈现为“行为偏好”、“身份特质”、“人脉关系”、“履约能力”和“信用历史”等,对应了用户教育职业、消费行为、资产状况、社交关系等方面信息,但对于媒体报道乃至部分坊间观点认为,可以通过网购、互相转账等方式,来提高信用分的说法,芝麻信用也进行了澄清。
“互相划款提高信用分是无稽之谈”,芝麻信用在回应声明中称,这种手法会被芝麻信用的大数据模型识别,不但无效还会给用户信用历史带来负面影响。按照该公司的解释,其征信系统参考数据关系多达数亿条,结合的底层指标超过上万个,数据来源包括电商数据、互联网金融数据、公安网、最高法、教育部、工商等公共机构数据,除此之外还有第三方合作伙伴以及用户自主递交生活、支付、购物、投资、公益等多个场景。
蚂蚁金服内部人士告诉记者,某一维度数据丰富并不意味芝麻信用分高。该人士还表示,芝麻信用也不是所谓“会员”概念,因为平常的积分是只会增加不会减少,而芝麻信用因为多种数据,可能会有所下降。
但对于这个构建在“大数据”概念下的信用维度架构和规则,芝麻信用方面却一直没有对外透露。“如果我们披露的话,就会有人去刷信用。”前述人士表示。
网络征信试水
“央行对于民企做征信,还是有顾虑的,既然是试点,就应该允许探索不同方法,尤其是企业行为,更应该坚持市场导向,有一些市场行为也无可厚非。”中央财经大学教授黄震表示。
在黄震看来,BAT以及其他一些公司,都积累了很多数据,不管是交易、社交乃至交通旅行等方面数据,有一定数据基础和条件的数据公司,都应该鼓励尝试,“哪怕只是一孔之见。”
他同时指出,国外早就有了用各种数据作为征信依据,包括航空公司、大型零售商与银行机构合作,基于一些评级、评价数据分析,推出相关产品服务。
“央行征信中心难以覆盖到个人征信需求,存在瓶颈问题,”黄震告诉记者,国内多个机构、部门数据实际上都不怎么打通,形成了信息孤岛。互联网和大数据技术发展,带动起个人征信尝试,实际和借款、消费信贷等一样,都是将原有垄断打破。
不过黄震认为,现在互联网征信还谈不上颠覆,更重要是数据价值挖掘、联网、开放。
按照芝麻信用的说法,芝麻信用除了阿里系统数据外,还有很多第三方数据,互联网金融千人会秘书长易欢欢则认为,个人征信不管是外在形式如何,娱乐化或者营销模式怎么样,最重要还是要从内在看数据价值挖掘,能否构建起一个可以信赖、验证模型,这也将是一个长期的过程,既需要数据本身积累,与其他各方打通,同时也需要反复验证以提高准确率,“从目前看,阿里和腾讯都在做积极尝试。”
实际上,包括“芝麻信用”以及其他第三方征信产品,最核心构建理念基本都是互联网与大数据,这也为互联网公司津津乐道。
但迄今为止,成熟的商业产品依然有待验证,与此同时,央行也尚未发布真正的个人征信牌照,所以企业也都是“试牌照”。花果金融CEO认为,所谓“大数据”应用,有很大一部分还是出于互联网讲故事因素,“大数据应用于征信确实有一些成功案例,但大规模应用目前还不存在。此外,目前关于大数据很多时候也是出于互联网公司讲故事的需要。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03