京公网安备 11010802034615号
经营许可证编号:京B2-20210330
基于常规法则的大数据分析最佳实践
由于出现了新词汇、新技术、新产品和新提供商,“大数据”分析让人很陌生,但是经过检验的数据管理最佳实践方法一样能够在这个仍然属于新兴学科的领域发挥作用。
与各种商业智能(BI)和数据仓库一样,专家认为在开始进行大数据分析项目之前,清晰理解组织的数据管理需求和明确策略是非常重要的。大数据分析被广泛地进行讨论,而且各种行业的公司都充斥着新数据源和不断增多的信息。但是,在未明确这样做能够真正给公司带来什么价值之前,就投入大量的资源应用大数据技术,这就是所谓用户的最严重失误。
David Menninger是Ventana研究公司的一名分析师,他主要关注于BI、分析与信息管理技术。他认为不要在这个技术上表现得太激进,要先从业务角度着手,并且要与CIO、数据科学家和业务人员进行交流,一起确定业务目标和预期价值,然后再开始动手。
准确定义可用的数据和确定组织最佳利用这些资源的方式是整个过程中最关键的部分。Menninger指出,CIO、IT经理和BI人员需要确定所保留、聚集和使用的数据是什么,并且将它们与丢弃的数据进行比较。同时一定要考虑目前仍未涉及但可能会加入的外部数据源。
Menninger指出,即使公司不确定何时及如何应用大数据分析,尽早进行这种评估仍然是有好处的。此外,开始数据捕捉的过程能够帮助您准备好实现最终的跳跃。他说:“即使您不知道将使用它来做什么,也要先捕捉数据。否则,您就会失去一个机会,因为您没有足够的历史数据可以分析。”
大数据要从小开始
分析大数据集也一样要从小机会开始,然后再使用它们作为起点。随着公司不断地扩大分析的数据源和信息类型,以及开始创建最重要的分析模型,帮助他们发现结构化和非结构化数据的模式和相关性,他们需要注意那些对于预期业务目标而言最重要的结果。
Gartner公司的分析师Yvonne Genovese指出:“如果您最终只能寻找新的模式,而且它们毫无用处,那么您肯定遇到死角了。”
ComScore公司专门跟踪互联网使用,为企业客户提供Web分析和销售智能服务。它们很早就认识到需要某种大数据策略。但是,ComScore选取了一些非常有针对性的点,然后再慢慢建立自己的大数据分析项目。
ComScore的软件工程副总裁Will Duckworth说:“我们从小开始——提取各个数据流,再将它们传输到不同的系统。如果您无法达到一定的规模,您是无法一夜之间做到这一点的。”
鉴于公司处理的数据量,规模正是comScore重视的方面。早在2009年,当它一开始每天只采集到3亿条记录的时候——现在每天达到230亿条记录并仍在增长,Duckworth就开始寻找一些新系统和技术基础架构,以高效地完成comScore的数据处理。
不要忘记最终目标仍是大数据
通过利用开源Hadoop 技术和新型分析工具,Duckworth对开源环境进行了优化,这样SQL的业务分析人员便可以更容易地接受。他指出,在确定大数据分析实施计划时,公司一定要重视规模因素。
他解释说:“您一定要考虑到变化——从现在开始的半年内,您需要处理多少数据,您需要增加多少服务器,是否由软件来完成这些任务。人们并没有考虑到数据增长的程度,以及觖决方案部署到生产环境后的流行程度。”
在陷入大数据“新常态”之后,许多公司经常忽略的另一个方面是数据管理的“旧常态”仍然是有效的。
Gartner的另一位分析师Marcus Collins指出,“信息管理实践方法对于现在的大数据和以前的数据仓库都是一样重要的。即使是对于希望增加处理灵活性的公司而言,他们也要记住一点,信息是企业资产,应该一如继往地保持重视。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16