
如何建立大数据时代的数据管理策略
在大数据的时代,如何管理数据也是非常重要的议题,数据管理不能只是做好备份,还要进一步做到数据保护,而做好数据保护必须要考虑3个层面,分别是保护 、管理及存取。
在数据保护方面,不但要有高效率,同时还要能减少成本。由于数据量成长的速度非常惊人,光是结构化的数据,可能就得独立成立一个数据库,而非结构化的数据,则因为会产生惊人的数据数量,档案数量甚至高达上亿个,自然也就增加数据的备份及维护的困难度。
虽然数据量一直在成长,但受限于经济景气成长有限,企业投资在数据管理的资源,不管是人力及物力,其实也都有跟不上的困扰。但即使如此,数据存取还是要能做到更进一步的处理,如让数据也可用行动装置处理,如何让数据更迅速地被查到,但又必须要做好保护措施。
客户往往会有各式各样的要求,如要求要回复某一年年某一周的数据,但回复后的数据,是否真的就是客户所需要的,其实很不容易,如果能用一个方便客户查询的介面来管理,IT人员的处理压力相对也小。此外,当数据大到一定的程度时,数据管理平台也可以数据快照的方式,达成比较简易的数据储存备份目标。
数据管理平台不仅要具备快照的简便功能,但同时也要避免快照可能带来的风险,如果能有一个单一数据管理平台,将可加快恢复和规范化运作的过程。
不仅如此,透过单一数据管理平台,还可以减少一半以上所需的备份、存档和报告合并的时间,减少影响生产环境的因素,提高服务器性能,同时也能减少最高达90%的冗余数据,只要善用整合管理能力,就可以最大限度地提高效率,优化数据管理,降低存储空间。
此外,企业就算有做数据备份,但还是要做归档的动作,如有些数据可能摆放超过3个月都没有处理,就得思考是否还要将这种数据摆放在可以快速存取的区域,如应该将常常存取的数据,放在速度更快的硬碟中。有些企业却选择再买一套归档软体,一旦发生灾难,要将数据找回来,要是有些数据已经被归档了,就得先确定数据被归档给谁或到那里,如果备份及归档软体不是同一套,查阅起来就会变得非常麻烦。
当企业前端的数据在进行保护的同时,所有的数据就会加以备份,同时也会进行分析,执行归档的动作,而且前述动作因为是在同一个平台上完成,可以减少IT人员的工作负担,也比较容易找到用户真正需要的数据。
由于备份是数据保护的最后一套防线,而要把数据备份及归档在同一时间完成,并提供清楚的报表分析,才能做好数据保护,因此数据管理平台及资讯管理软体,最好是能整合在一起,才能同时做好数据备份及保护。
针对虚拟化数据的保护更是重要。很多企业都会做数据备份,却不知道正在备份的数据量有多少,备份有没有成功,透过单一数据管理平台,不但可以让虚拟化数据的保护更加灵活,而且还能够根据业务需求,自动保护和恢复必要的数据,或是让IT人员很轻易地操作应用。
在数据管理方面,则是要具备自动化的内容感知能力,才能够减少基础设施的投资,最高甚至可以减少7成,自动化则可简化管理,让数据应用保持灵活性,以便因应时间变化而出现的新业务需求,让数据增加商业价值。
在数据存取方面,则必须达到提高生产率、降低风险及增加洞察力的目标。让数据可以简单地查找,但也不能忘掉数据保护,如使用权限控制等。林明义强调,数据保护不只是要保护数据,还要满足数据存取的需求。
强调企业采用单一数据管理平台,不但在降低基础设施成本的效应相当显着,而且还可巩固并降低IT架构环境的复杂性,进而减少数据取用风险,数据回覆及读取速度也得以提升,有利制定IT业务部门的综合经营方针,让数据转换成企业最有价值的资产,成为企业经营策略的重要数据来源,才算是真正做到数据保护及管理的目标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26