
亚马逊首席技术官Werner Vogels表示:“你拥有的数据永远不够多,数据越多对于企业的好处就越多。”
亚马逊绝对算是大数据领域的先驱,但事实上,所有行业都正在享受收集和分析数据带来的优势。
制造业、医疗保健业、农业、零售业等,每个活动收集的数据(无论是看似多么微不足道的数据)都意味着更多的机会来调整流程和运营,以尽可能地提高工作效率。
不同的行业在以不同的方式来响应大数据趋势。零售业和销售行业将会依赖于尽可能多地收集关于其客户生活的信息,而在制造业,重点则是精简运营。
设备校准设置可以被记录和调整,而受监控的产品存储环境则可以确定如何确保最小的损坏和浪费。
对于全球性大型企业而言,这可能意味着收集和分析来自世界各地的工厂的数据,从而对其中的差异进行研究。
例如,去年制药巨头公司Merck使用数据分析大幅减少了废物量,这些废物主要是由于制造环境及条件的差异所造成。
这个数据分析耗时三个月,对来自550万疫苗批次的生产数据进行了150亿次计算。这让他们可以发现发酵过程中的最佳条件,在FDA已经批准了对生产过程的这种改变后,这帮助他们大大提高了产量。
在汽车行业,汽车研究中心在最近的报告中将通过先进的IT解决方案和大数据带来的改进成为“创新引擎”。
该报告强调了不断增长的汽车和行业复杂性是制造商面临的最大挑战,并指出了通过技术和数据分析解决这些挑战的方法。
制造过程中每台机器的效率可以记录下来,企业就可以了解运行情况,并在需要的地方做出改进。
而在农业,数据分析正在帮助该行业解决提高世界粮食60%的挑战,预言家称,由于不断增长的人口,到2050年我们将需要这么多的粮食。
John Deere将传感器部署在其拖拉机和农业机械,让人们可以在myjohndeere.com和Farmsight服务读取相关数据。这些可以帮助农民创造庄稼生长的最佳条件,同时让John Deere预测对备件的需求。
在产品制造(或生成)后,需要被销售和分销。大型零售商收集的关于客户的PB级数据可以让他们知道哪些人想要购买这些产品,这些客户在哪里。
亚马逊利用其S3系统来追踪分散在世界各地的几十个仓库和配送中心的库存情况。操作工可以实时追踪来查看什么货物在哪里,它应该被送去哪里。
大型供应商进行的这种大的改进将会影响企业供应链,亚马逊允许其他企业授权这种技术来帮助其运作。随着时间的推移,中小型企业将会发现他们也可以使用行业领导者正在使用的工具。
通过销售,零售商可以使用数据来确定库存应该显示在哪里,哪些商店某种特定产品卖得最好,并追踪客户的情况。会员卡并不是新鲜事,但可以帮助对客户的习惯进行分析,同时能够帮助分析客户的购买趋势。这种数据分析让亚马逊相信他们很快就能够预测客户将会购买什么,以至于在客户下单之前就准备好足够的库存来发货。换句话说,他们将对他们的系统有足够的信心,他们相信这种先发制人的订单所带来的利润将会超过来回邮寄的成本。
物联网将会带来更多改进,随着设备学会互相沟通和合作,给世界带来更多连接。本周,思科宣布为致力于提高虚拟和物理世界之间整合的初创公司提供1.5亿美元的基金。
对于企业而言,让其生产、库存控制、配送和安全系统完全连接,并让它们互相通信,将意味着更高的效率和更少的浪费。
各行各业都正在享受大数据分析带来的好处,我们相信,在可预见的未来,寻找收集、记录和分析数据的创新方法将是企业的重要工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15