京公网安备 11010802034615号
经营许可证编号:京B2-20210330
看互联网大数据时代的喜与忧
近来,“大数据”这个词非常的火热。随着科技与互联网的进步,数据似乎已经成为改变一家企业所必不可少的利器。尤其是随着大数据时代的到来,一些曾经非常棘手的问题都能够迎刃而解。比如Google能够先于美国的公共卫生机构发现流感的发生以及传播,甚至能够精确到某个地域,准确率曾高达97%,而这在小数据时代是完全无法想象的。
大数据时代无论是为企业还是为政府亦或是个人都带来了极大的便利。企业能够通过数据分析准确判断出客户的兴趣爱好、购买意向并以此来向客户推荐相关性最高的产品。而这其中做得最为成功的尤属亚马逊。亚马逊在最开始的时候采用的是图书评论形式来向用户推荐图书,但是当拥有大量的用户数据之后转而使用数据分析的形式来向用户推荐图书。成交率比之前有大大的提高,而且再也不需要评论编辑这样也可节约一定的人力成本。
在大数据时代,人们无需在苦苦寻找事物的因果关系。仅通过分析数据来得出相关关系即可,也就是说人们只要知其然而无需知其所以然。比如说,埃齐奥尼开发的Farecast系统能够从现有的航空公司大量的机票销售数据当中分析预测出什么时候购买机票最为便宜。但是却并不知道是什么让机票变得便宜了,而且这也并不是重点,人们只需要知道结果即可。
此外,大数据时代另一个进步在于“样本=全体”。与小数据时代的抽样统计相比,显然这样的方式更具有精确性。因为,大数据时代是将所有的数据作为样本区分析的,能够更加准确并且及时的发现人们曾经所发现不了的细节,而这些细节很可能会关乎成败。而且对于这些数据人们不再盲目追求精确,而是要包含一定的混杂数据。因为这也是属于大数据当中的一部分,只有数据越全面结果才能够越准确。
最为关键的是大数据在商业上面的价值,要比以往任何时候都显得尤为重要。数据的收集、分析也比以往要变得更为廉价、方便。企业只要通过大量的客户数据分析就能够准确制定下一步的经营策略,以及产品改进。比如,一家汽车企业能够通过对客户的坐姿数据的分析来制作汽车的防盗系统、银行能够根据你的社交数据来分析你是否能够偿还贷款。虽然这些看起来并无多少关联,但是大数据让这一切变为可能。
尽管大数据时代的到来有着诸多的好处,但是任何事物总有两面性。大数据时代在给我们带来惊喜的同时也给我们带来许多困扰。比如,我们个人的隐私问题,在大数据时代我们身边每时每刻都会有“第三只眼”在时刻盯着我们的一举一动。你的任何行为都有可能成为某个商家或是机构的分析数据并且随时有可能将之公诸于众。在大数据时代个人隐私或将成为一个“伪命题”。一旦被人非法利用,后果将不堪设想!
而且在大数据时代,人们的思维或许一时还很难转变。所以,如何正确分析并利用大数据就成为一个亟待解决的问题。尽管大数据能够帮人预测某种趋势,诸如根据某人过去的行为预测其可能犯罪之类的,但是我们并不能够依据这些预测就将其定罪。毕竟,事情还没有发生,尽管可以预防但是却不能够惩罚。
最后一点,在大数据时代人们会过于依赖对数据的分析。一旦数据出错,那么人们根据数据所做出的决策与判断都将是错误的。如果在企业运作当中,一次错误的数据分析很容易将企业毁于一旦。而且,数据分析让一切都变得标准化。但是,这并不是完全正确的。诸如一些产品设计,需要设计人员的灵感、需要一些艺术上的创造而不仅仅是一些冰冷的数据。Google在数据的运用上可谓是炉火纯青,但是Google也难免会犯一些常识性的错误。因为Google在招募人才的时候选择了统一的成绩数据标准作为招聘的主要依据。但是,这些并不足以表明一个人究竟是否是人才,但是Google却固执的坚守着这一错误行为。这就是对于大数据的过度依赖,所造成的。
我说过,一件事情总有两面性。大数据在帮人类解决问题的同时也在为人类创造新的问题,对于大数据的使用也同样如此。尽管大数据有着足够强大的力量,但是我们最需要改善的不是数据库的大小、精准与否,而是我们的思维,因为思维才是驾驭科技最根本的力量!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06