
看互联网大数据时代的喜与忧
近来,“大数据”这个词非常的火热。随着科技与互联网的进步,数据似乎已经成为改变一家企业所必不可少的利器。尤其是随着大数据时代的到来,一些曾经非常棘手的问题都能够迎刃而解。比如Google能够先于美国的公共卫生机构发现流感的发生以及传播,甚至能够精确到某个地域,准确率曾高达97%,而这在小数据时代是完全无法想象的。
大数据时代无论是为企业还是为政府亦或是个人都带来了极大的便利。企业能够通过数据分析准确判断出客户的兴趣爱好、购买意向并以此来向客户推荐相关性最高的产品。而这其中做得最为成功的尤属亚马逊。亚马逊在最开始的时候采用的是图书评论形式来向用户推荐图书,但是当拥有大量的用户数据之后转而使用数据分析的形式来向用户推荐图书。成交率比之前有大大的提高,而且再也不需要评论编辑这样也可节约一定的人力成本。
在大数据时代,人们无需在苦苦寻找事物的因果关系。仅通过分析数据来得出相关关系即可,也就是说人们只要知其然而无需知其所以然。比如说,埃齐奥尼开发的Farecast系统能够从现有的航空公司大量的机票销售数据当中分析预测出什么时候购买机票最为便宜。但是却并不知道是什么让机票变得便宜了,而且这也并不是重点,人们只需要知道结果即可。
此外,大数据时代另一个进步在于“样本=全体”。与小数据时代的抽样统计相比,显然这样的方式更具有精确性。因为,大数据时代是将所有的数据作为样本区分析的,能够更加准确并且及时的发现人们曾经所发现不了的细节,而这些细节很可能会关乎成败。而且对于这些数据人们不再盲目追求精确,而是要包含一定的混杂数据。因为这也是属于大数据当中的一部分,只有数据越全面结果才能够越准确。
最为关键的是大数据在商业上面的价值,要比以往任何时候都显得尤为重要。数据的收集、分析也比以往要变得更为廉价、方便。企业只要通过大量的客户数据分析就能够准确制定下一步的经营策略,以及产品改进。比如,一家汽车企业能够通过对客户的坐姿数据的分析来制作汽车的防盗系统、银行能够根据你的社交数据来分析你是否能够偿还贷款。虽然这些看起来并无多少关联,但是大数据让这一切变为可能。
尽管大数据时代的到来有着诸多的好处,但是任何事物总有两面性。大数据时代在给我们带来惊喜的同时也给我们带来许多困扰。比如,我们个人的隐私问题,在大数据时代我们身边每时每刻都会有“第三只眼”在时刻盯着我们的一举一动。你的任何行为都有可能成为某个商家或是机构的分析数据并且随时有可能将之公诸于众。在大数据时代个人隐私或将成为一个“伪命题”。一旦被人非法利用,后果将不堪设想!
而且在大数据时代,人们的思维或许一时还很难转变。所以,如何正确分析并利用大数据就成为一个亟待解决的问题。尽管大数据能够帮人预测某种趋势,诸如根据某人过去的行为预测其可能犯罪之类的,但是我们并不能够依据这些预测就将其定罪。毕竟,事情还没有发生,尽管可以预防但是却不能够惩罚。
最后一点,在大数据时代人们会过于依赖对数据的分析。一旦数据出错,那么人们根据数据所做出的决策与判断都将是错误的。如果在企业运作当中,一次错误的数据分析很容易将企业毁于一旦。而且,数据分析让一切都变得标准化。但是,这并不是完全正确的。诸如一些产品设计,需要设计人员的灵感、需要一些艺术上的创造而不仅仅是一些冰冷的数据。Google在数据的运用上可谓是炉火纯青,但是Google也难免会犯一些常识性的错误。因为Google在招募人才的时候选择了统一的成绩数据标准作为招聘的主要依据。但是,这些并不足以表明一个人究竟是否是人才,但是Google却固执的坚守着这一错误行为。这就是对于大数据的过度依赖,所造成的。
我说过,一件事情总有两面性。大数据在帮人类解决问题的同时也在为人类创造新的问题,对于大数据的使用也同样如此。尽管大数据有着足够强大的力量,但是我们最需要改善的不是数据库的大小、精准与否,而是我们的思维,因为思维才是驾驭科技最根本的力量!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24