
与贵阳大数据产业发展“同频共振”
当大多数人还在疑惑“贵州为什么要发展大数据”时,这家企业便已决定落户贵阳,并建起有2700余台服务器的数据中心;
当别人“以业务为主导”时,这家企业已提出以“服务为主导”,发起成立贵阳大数据产业技术联盟,聚集一批国际先进公司,致力于大数据人才培养;
当贵州大数据产业发展得风生水起时,这家企业又与戴尔、微软等知名企业联合组建大数据实验室,通过搭建开放、共享的公共实验平台和公共孵化平台,完善产业生态系统……
回顾贵州高新翼云科技有限公司在贵阳的发展轨迹,从机房建设到人才培养再到技术共享,这家企业总是在行业“领先一步”,与贵阳大数据产业发展“同频共振”,在大数据产业缺乏可供借鉴路径之时,积极为贵阳完善区域性大数据产业生态系统贡献力量,助力贵阳、贵州建成大数据产业技术高地。
看中天时地利 数据中心落户贵阳
2013年底,高新翼云的初创团队在企业总经理许宁的带领下来贵阳考察。2014年3月,贵州高新翼云科技有限公司正式落户贵阳高新区。那时,“大数据”在国内还是个新名词,很多人都还对“贵州为什么发展大数据”充满疑惑。
高新翼云在贵阳的第一个项目是建设数据中心,目标是力争打造国内一流的互联网数据中心,成为贵州乃至全国领先的应用服务及云计算服务提供商。2014年7月,高新翼云投资1.2亿元,完成数据中心一期建设,布置了216个机柜、2700余台高性能服务器。在未来几年中,高新翼云还将建设数据中心二期,机柜要达到1200个,服务器要达到12000台。
为何要将数据中心建在贵阳?高新翼云曾做过一项对比:按照1200个机柜的规模,同样大工业电价,广州为8300万元/年、贵阳为4800万元/年,每年仅电价便可节约3500万元,相当于高新翼云一期数据中心投资的15.8%,在运营稳定的情况下,加上数据中心盈利,保守估算,3至5年可利用电费节约款项再建设一个同等规模数据中心。
“贵州气候宜人、水煤资源丰富、政府政策利好,在贵州做灾备数据中心优势明显。”该企业数据中心经理樊伟焯说,目前高新翼云正在运营的216个机柜的入租率已达95%以上,仅有一个空闲的微模块留作备用。
联合行业大鳄 培养本土人才
发展大数据,贵州、贵阳具备各种自然生态资源优势,也面临着较明显的发展短板。
“其中人才缺失比较严重。”樊伟焯说,在高新翼云的技术团队中,将近一半人员来自广州、深圳等地,高新翼云未来1万台服务器大概需要10个系统管理人员,但目前只招到3个。“随着三大电信运营商100万台服务器的投入运营,贵州的数据中心仅系统管理人员就需要1000人,这还不包括其他方面的大数据人才需求。”
为此,高新翼云于2014年8月发起成立贵阳大数据产业技术联盟,聚集英特尔、戴尔、华为、甲骨文等一批产业链上的国际先进公司、教育机构和研究机构,共同在大数据人才培养上下功夫。“对大数据时代的认知、对贵州资源优势的认可、以及对人才培养的认同,是大家一拍即合的原因。”许宁说。
今年8月,高新翼云取得红帽公司在贵州地区开设课程的授权,贵州大学已有20名大四学生报名参加实训,今年10月份正式授课,实训内容包括基础架构系统、大数据分析、软件开发等。“按照规划,一年的培训规模200到500人左右,以满足贵州、贵阳大数据产业三到五年的发展需求。经过考试后,接受培训人员可取得在IT行业中极具含金量的红帽的从业资格认证。”樊伟焯说。
搭建开放平台 完善产业生态系统
在贵州大数据产业风起云涌之际,如何构建完整的大数据产业生态系统?高新翼云计划通过搭建一个开放和共享的平台,助力贵阳、贵州建成大数据产业技术高地。
今年5月27日,在贵阳国际大数据产业博览会暨全球大数据时代贵阳峰会期间,高新翼云与戴尔签署了中小企业云合作协议,共同组建“戴尔——高新翼云IT联合实验室”。目前,贵阳已将车管所3至5年的历史数据放在该实验室,供实验室进行数据的提取和研究,以开发出更多的大数据商业价值的应用。
“我们现在也与微软合作,希望通过多个联合实验室互为补充,构成一个集基础研发、测试、实验以及产业研究为一体的公共平台。”樊伟焯说,在实验室中,戴尔、微软等知名企业将免费发布自身产品的解决方案理念和软件模型,企业、创客、在校学生等均可根据发布的内容进行设计和应用研发,研发成果可立即在实验室中测试,测试完毕后如果能够满足客户需求,便可立即进入高新翼云中心企业云平台运行、销售、商用。
“这样一来就能吸引大量用户参与,以天马行空的想象力开发出形式更加多样的大数据应用产品。”樊伟焯说,作为公共平台的提供商,高新翼云不仅可以在产品出售中获得收益,还可大幅缩短自身产品市场化的周期,让企业未来的发展路径更加多元化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08