京公网安备 11010802034615号
经营许可证编号:京B2-20210330
与贵阳大数据产业发展“同频共振”
当大多数人还在疑惑“贵州为什么要发展大数据”时,这家企业便已决定落户贵阳,并建起有2700余台服务器的数据中心;
当别人“以业务为主导”时,这家企业已提出以“服务为主导”,发起成立贵阳大数据产业技术联盟,聚集一批国际先进公司,致力于大数据人才培养;
当贵州大数据产业发展得风生水起时,这家企业又与戴尔、微软等知名企业联合组建大数据实验室,通过搭建开放、共享的公共实验平台和公共孵化平台,完善产业生态系统……
回顾贵州高新翼云科技有限公司在贵阳的发展轨迹,从机房建设到人才培养再到技术共享,这家企业总是在行业“领先一步”,与贵阳大数据产业发展“同频共振”,在大数据产业缺乏可供借鉴路径之时,积极为贵阳完善区域性大数据产业生态系统贡献力量,助力贵阳、贵州建成大数据产业技术高地。
看中天时地利 数据中心落户贵阳
2013年底,高新翼云的初创团队在企业总经理许宁的带领下来贵阳考察。2014年3月,贵州高新翼云科技有限公司正式落户贵阳高新区。那时,“大数据”在国内还是个新名词,很多人都还对“贵州为什么发展大数据”充满疑惑。
高新翼云在贵阳的第一个项目是建设数据中心,目标是力争打造国内一流的互联网数据中心,成为贵州乃至全国领先的应用服务及云计算服务提供商。2014年7月,高新翼云投资1.2亿元,完成数据中心一期建设,布置了216个机柜、2700余台高性能服务器。在未来几年中,高新翼云还将建设数据中心二期,机柜要达到1200个,服务器要达到12000台。
为何要将数据中心建在贵阳?高新翼云曾做过一项对比:按照1200个机柜的规模,同样大工业电价,广州为8300万元/年、贵阳为4800万元/年,每年仅电价便可节约3500万元,相当于高新翼云一期数据中心投资的15.8%,在运营稳定的情况下,加上数据中心盈利,保守估算,3至5年可利用电费节约款项再建设一个同等规模数据中心。
“贵州气候宜人、水煤资源丰富、政府政策利好,在贵州做灾备数据中心优势明显。”该企业数据中心经理樊伟焯说,目前高新翼云正在运营的216个机柜的入租率已达95%以上,仅有一个空闲的微模块留作备用。
联合行业大鳄 培养本土人才
发展大数据,贵州、贵阳具备各种自然生态资源优势,也面临着较明显的发展短板。
“其中人才缺失比较严重。”樊伟焯说,在高新翼云的技术团队中,将近一半人员来自广州、深圳等地,高新翼云未来1万台服务器大概需要10个系统管理人员,但目前只招到3个。“随着三大电信运营商100万台服务器的投入运营,贵州的数据中心仅系统管理人员就需要1000人,这还不包括其他方面的大数据人才需求。”
为此,高新翼云于2014年8月发起成立贵阳大数据产业技术联盟,聚集英特尔、戴尔、华为、甲骨文等一批产业链上的国际先进公司、教育机构和研究机构,共同在大数据人才培养上下功夫。“对大数据时代的认知、对贵州资源优势的认可、以及对人才培养的认同,是大家一拍即合的原因。”许宁说。
今年8月,高新翼云取得红帽公司在贵州地区开设课程的授权,贵州大学已有20名大四学生报名参加实训,今年10月份正式授课,实训内容包括基础架构系统、大数据分析、软件开发等。“按照规划,一年的培训规模200到500人左右,以满足贵州、贵阳大数据产业三到五年的发展需求。经过考试后,接受培训人员可取得在IT行业中极具含金量的红帽的从业资格认证。”樊伟焯说。
搭建开放平台 完善产业生态系统
在贵州大数据产业风起云涌之际,如何构建完整的大数据产业生态系统?高新翼云计划通过搭建一个开放和共享的平台,助力贵阳、贵州建成大数据产业技术高地。
今年5月27日,在贵阳国际大数据产业博览会暨全球大数据时代贵阳峰会期间,高新翼云与戴尔签署了中小企业云合作协议,共同组建“戴尔——高新翼云IT联合实验室”。目前,贵阳已将车管所3至5年的历史数据放在该实验室,供实验室进行数据的提取和研究,以开发出更多的大数据商业价值的应用。
“我们现在也与微软合作,希望通过多个联合实验室互为补充,构成一个集基础研发、测试、实验以及产业研究为一体的公共平台。”樊伟焯说,在实验室中,戴尔、微软等知名企业将免费发布自身产品的解决方案理念和软件模型,企业、创客、在校学生等均可根据发布的内容进行设计和应用研发,研发成果可立即在实验室中测试,测试完毕后如果能够满足客户需求,便可立即进入高新翼云中心企业云平台运行、销售、商用。
“这样一来就能吸引大量用户参与,以天马行空的想象力开发出形式更加多样的大数据应用产品。”樊伟焯说,作为公共平台的提供商,高新翼云不仅可以在产品出售中获得收益,还可大幅缩短自身产品市场化的周期,让企业未来的发展路径更加多元化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07