
福布斯观察分析大数据6大看点
日前,在美国软件服务提供商天睿公司(Teradata)赞助下,《福布斯观察》联合麦肯锡咨询公司发布有关大数据分析状态的调查报告。调查对象是316位来自全球大型企业的高管。该调查报告有六大看点:
一是对大数据的炒作趋弱,大数据开始为企业争取竞争优势。调查显示,约90%的企业对大数据分析投资处于中等或较高水平。约三分之一的企业高管认为该项投资“非常重要”。最重要的是,约三分之二的受访者认为大数据分析举措已经对企业收入产生了可衡量的重大影响。59%的企业高管认为大数据分析是企业的重要问题之一或是实现竞争优势的最重要途径。
二是正确的企业文化是大数据成功的关键。51%的高管认为调整和完善“数据驱动”策略是最大的文化障碍。47%的高管将学习大数据看做是一项业务挑战。43%的高管将培养企业文化作为关键性挑战,包括奖励员工使用大数据、重视创造力、使用数据进行实验等。47%的高管认为自己公司的大数据分析能力低于平均水平。调查发现,受访者越了解大数据分析,就越认为本公司的大数据分析能力较低。例如,在数据科学家中,只有8%的受访者认为自己公司能力最强,10%认为自己公司在平均水平之上。
三是首席执行官的态度决定大数据的地位。认为大数据是获得竞争优势最重要途径的企业中,51%是源于首席执行官致力于发展大数据。将大数据看做是重要问题之一的企业,最高领导层通常在大数据上花费大量的时间和精力。最后,若公司拥有CXO级别的数据分析职位,则公司的数据分析能力更可能高于平均水平。
四是发展大数据从正确的理念到正确的行动还有很长的路要走。48%的高管认为基于大数据做出的商业决策是关键的战略挑战。43%的高管认为基于大数据制定企业战略是重大障碍。获得大数据分析带来的收益还面临其他障碍,包括如何利用现有资源从数据中获得最多的见解以及将数据视为有价值的资产。
五是大数据带来“金矿”。大数据在三个关键领域带来创新机会:创造新的商业模式(54%)、发现新的产品服务(52%)、实现货币化收益(40%)。为了抓住这些机会,企业除了寻找交易数据外,也在探索各种数据类型。其中,被使用最多的是位置数据,其次是文本数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23