
大数据与云计算,拯救帕金森
医疗行业的变革正成为新的风口,今天作者想讲讲大数据与基因技术结合,正在产生什么新的想象力。其中尤以基因检测技术走到了前面,让我们谈谈“帕金森综合症”:
在未来,基因检测术将会成为医疗不可或缺的一部分。越来越多的人会进行基因测序来了解自己的生命体征和健康状况。国内最大的基因检测机构华大基因,也正在抓住机会,用信息技术提升基因检测技术,致力于提供更好的基因服务。
基因,这个被我们熟悉却又十分陌生的词汇开始频繁出现。然而基因检测海量、复杂、多变的数据计算需求一直是华大基因前进道路上的鸿沟。解决数据分析和计算成了必须要克服的问题。
大数据打入帕金森
2014年8月13日,迈克尔·J·福克斯帕金森氏症研究基金会(MJFF)和英特尔公司对外宣布了一项合作,促进帕金森氏症的研究和治疗——帕金森氏症是一种全球范围的、患病率仅次于阿兹海默氏症的神经退行性脑部疾病。这项合作将利用全新的大数据分析平台进行多阶段研究——利用可穿戴技术监测患者症状,并用收集得来的数据探索相关模型。
可穿戴设备能够24×7全天候地在后台实时收集和传输相关客观数据。通过这种方法,研究人员能以每秒数百读数的速度分析来自成千上万患者的数据,同时获得海量数据以用于探索模型和获取新发现,再也不必受限于零星收集得来的少量数据信息和繁杂的书面患者日志。
所有这些,都可进一步帮助实现针对帕金森氏症本质的洞察,从而帮助科学家们衡量新药品的功效,以及协助医生制定预后方案。
英特尔公司高级副总裁兼数据中心事业部总经理柏安娜表示,“帕金森氏症症状的多样性给疾病检测的进展带来了巨大挑战。新兴的技术不仅可以创建一个测量帕金森氏症的全新范例,还能为医学界提供更多数据,以便找出目前尚未明确的疾病特征,从而开拓全新的研究领域。”
大数据和云计算给医疗界带来了新的光明,利用它们来解决基因测序带来的问题是大势所趋。
解决信息技术瓶颈
“只有以科学发展,以大技术、大平台、大数据支撑下的基因产业,才是无穷无尽的,永远没有冬天。”华大基因总裁、深圳华大基因研究院院长汪建先生如是说。这也最终促成了华大基因与英特尔的合作。
华大基因在基因测序计算中应用的BWA(Burrows-Wheeler Aligner),是基因研究中一款十分优秀并且被广泛使用的序列比对软件。由于BWA软件代码分支多,并且有很多随机访问,起初大家都不看好BWA的移植效果。但实际测试性能却已经完全出乎专家预期。
BWA包括6种优化方法:
第一,使用OpenMP代替Pthreads,使用schedule实现负载均衡、使用KMP_AFFINITY=balanced, granularity=thread实现线程绑定。
第二,使用双缓存,同时进行数据读取和计算。
第三,使用TBB的内存分配代理取代glibc的内存分配。
第四,使用多缓存进一步减少IO瓶颈。
第五,简化耗时函数中的循环。
第六,在至强融核上增加任务级并行按照输入文件进行任务划分,每个任务处理一部分输入数据,避免OpenMP的Map-Reduce并行模式带来的负载不均衡的开销。
在尝试了6种优化方法之后,BWA获得的最好加速比已经达到2.19。
而不得不说的是至强和至强融核的组合在代码迁移和优化上为基因测序带来了非常大的优势。王丙强博士说:“代码的修改工作量不大,只需要对源代码进行很小幅度的修改,是添加一些辅助编译指示,就能在这个组合上运行的相当好。”
实际应用中,借助英特尔的产品技术,计算效率能大大提高。以测序为例,以前传统的方式需要几个星期时间,而现在8个小时就可以完成。这是非常大的突破。
这一重大突破的背后,则是英特尔至强融核协处理器(Xeon Phi)。这是英特尔面向高度并行的高性能计算(HPC)应用所推出的协处理器,能够提供多达61个内核、244个线程和1.2万亿次浮点运算性能。此外,英特尔至强处理器架构使用同样的编程语言、并行模式、技术和开发人员工具,因此以往在至强处理器上运行的应用,在向至强融核上迁移时,具有更便捷、更易于移植等优势。
其编码的简单可移植性,正是基因测序相关程序中的重要需求。而其强大的计算能力为提高基因测序速度提供源动力,标准的编程模型也为基因测序向至强融核上的移植提供了便利。
在测试基于英特尔至强和至强融核的高性能计算平台的同时,华大基因也正在执行3M百万基因组计划,即百万动植物基因组计划、百万人基因组计划、百万微生态基因组计划。该项目将联合全球科学家,通过上百万样本的测序构建遗传信息的数据库,进一步推动基因组测序和生物信息分析技术在粮食安全、医学应用、生态保护等重大发展问题的应用。
现代生命科学和医疗健康正转变为由大数据和大计算推动。在这个技术为王的时代,任何独立的高端技术都将面临寒潮。只有相互协作,共同探索开发,才能真正的造福于人类。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10