
关于大数据,你不知道的6大迷思
过去两年,在Netflix以行为分析为基础打造的美剧House of Cards 《纸牌屋》爆红的同时,大数据也成了现代企业经营的显学。无论是消费、金融、电信、交通,甚至是政治、慈善,所有的研讨会上,一定可以看到大数据的身影。似乎人类组织有史以来的行销、管理等问题,有了Data,全部都可以解决。=
事情当然没有那么简单。就像任何新科技一样,大数据并不是万灵丹。要善用它,必须要从对的观念出发。今天就跟大家聊聊关于Big Data,我最常听到的6个迷思。
1.大数据是新时代的新玩意
事实上,数据分析一点也不新。早从数百年前的启蒙时代,学者们便已开始遵循科学方法,一步步拆解事物形成背后的原因。科学家先观察,取得并分析数据,归纳出假说,然后再经过不断实证,逐渐形成定律。因此我们说的大数据,充其量只是科学方法的应用。跟过去的科学家相比,现代大数据更多仰赖机器去做观察与取得数据的工作,以求更全面、更即时的资料收集。但后续的推论、归纳工作,还是需要人为的判断。
2. 100TB以上才叫大数据
数据的大小,事实上没有明确的界线。更重要的,数据的大小,不一定有意义。数据大,也不代表一定能做出準确的预测─假设你拥有地球70亿人口的姓名、性别、生日、身高、体重、肤色、视力,以及他们的上网行为等种种数据,如果题目是要预测他们明年的收入分布,这个庞大的资料库,恐怕还是无法帮上你什么。所以数据在精不在多,重点是要达成的任务,不是储存的数量。
3.数据非常客观
采集数据的软硬件,是人为设计的,因此不可能做到绝对的客观。手机停留在某个画面,就代表你在欣赏这个内容吗?很难说,或许你只是在跟旁边的朋友聊天。对某个发文点赞,就代表你真心喜欢这则资讯吗?也很难说,说不定只是喜欢发文的人,或是手滑不小心按到。真实世界,永远有测不准的环节,因此设计数据采集软件的人,很难绝对客观的去记录使用者行为,所以产生出来的数据,也很难是完全客观的。对于大数据,你该有的认知是它有相当、相对的客观性,但不可能绝对准确。
4.数据可以告诉你不知道的内幕
就像字面显现的,数据只能告诉你不知道的数据。但它究竟代表什么样的内幕,必须要靠归纳者自行去解读。举例来说,分析你的App使用者资料后,发现21-30岁女性族群占比最大,这可能代表着你的App对这种人最有吸引力,但也可能代表当初推广团队在发广告时,比较针对这样的族群。究竟事实是什么?往往需要更进一步的综合比较、实验分析,才能逼近。
5.大数据是资讯部门的问题
大数据的收集与储存,的确可以归类为资讯部门的业务。但定义该收集什么,如何收集,收集后该如何应用,绝对是业务主导部门该负责的。要求IT部门把大数据做好,就好像要求财务部门提昇公司获利一样,是本末倒置的。
6.大数据会改变一切,不懂数据的人将会被淘汰
数据的重点不是数据,而是解读与预测,也就是用数据验证人类的行为模式,用以提升产品与服务的设计,与潜在、现有客户沟通的方法与内容。因此,懂数据不是重点,懂人才是。在全面连网的世界,数据将会越来越泛滥,懂数据收集管理的人也将会越来越普遍。但无论科技如何发展,懂人的人,恐怕永远是少数。人感性、容易受到环境影响,因此难以预期。
所以,大数据是社会科学重要的进展,但企业要精准抓住未来,经理人要拥有更好的决断力,还是要基于对不同人、不同性的理解,而不仅是科技工具的使用而已。大数据不是万灵丹,它只是涡轮加速器,至于方向盘,仍旧掌握在你的手上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01