京公网安备 11010802034615号
经营许可证编号:京B2-20210330
关于大数据,你不知道的6大迷思
过去两年,在Netflix以行为分析为基础打造的美剧House of Cards 《纸牌屋》爆红的同时,大数据也成了现代企业经营的显学。无论是消费、金融、电信、交通,甚至是政治、慈善,所有的研讨会上,一定可以看到大数据的身影。似乎人类组织有史以来的行销、管理等问题,有了Data,全部都可以解决。=
事情当然没有那么简单。就像任何新科技一样,大数据并不是万灵丹。要善用它,必须要从对的观念出发。今天就跟大家聊聊关于Big Data,我最常听到的6个迷思。
1.大数据是新时代的新玩意
事实上,数据分析一点也不新。早从数百年前的启蒙时代,学者们便已开始遵循科学方法,一步步拆解事物形成背后的原因。科学家先观察,取得并分析数据,归纳出假说,然后再经过不断实证,逐渐形成定律。因此我们说的大数据,充其量只是科学方法的应用。跟过去的科学家相比,现代大数据更多仰赖机器去做观察与取得数据的工作,以求更全面、更即时的资料收集。但后续的推论、归纳工作,还是需要人为的判断。
2. 100TB以上才叫大数据
数据的大小,事实上没有明确的界线。更重要的,数据的大小,不一定有意义。数据大,也不代表一定能做出準确的预测─假设你拥有地球70亿人口的姓名、性别、生日、身高、体重、肤色、视力,以及他们的上网行为等种种数据,如果题目是要预测他们明年的收入分布,这个庞大的资料库,恐怕还是无法帮上你什么。所以数据在精不在多,重点是要达成的任务,不是储存的数量。
3.数据非常客观
采集数据的软硬件,是人为设计的,因此不可能做到绝对的客观。手机停留在某个画面,就代表你在欣赏这个内容吗?很难说,或许你只是在跟旁边的朋友聊天。对某个发文点赞,就代表你真心喜欢这则资讯吗?也很难说,说不定只是喜欢发文的人,或是手滑不小心按到。真实世界,永远有测不准的环节,因此设计数据采集软件的人,很难绝对客观的去记录使用者行为,所以产生出来的数据,也很难是完全客观的。对于大数据,你该有的认知是它有相当、相对的客观性,但不可能绝对准确。
4.数据可以告诉你不知道的内幕
就像字面显现的,数据只能告诉你不知道的数据。但它究竟代表什么样的内幕,必须要靠归纳者自行去解读。举例来说,分析你的App使用者资料后,发现21-30岁女性族群占比最大,这可能代表着你的App对这种人最有吸引力,但也可能代表当初推广团队在发广告时,比较针对这样的族群。究竟事实是什么?往往需要更进一步的综合比较、实验分析,才能逼近。
5.大数据是资讯部门的问题
大数据的收集与储存,的确可以归类为资讯部门的业务。但定义该收集什么,如何收集,收集后该如何应用,绝对是业务主导部门该负责的。要求IT部门把大数据做好,就好像要求财务部门提昇公司获利一样,是本末倒置的。
6.大数据会改变一切,不懂数据的人将会被淘汰
数据的重点不是数据,而是解读与预测,也就是用数据验证人类的行为模式,用以提升产品与服务的设计,与潜在、现有客户沟通的方法与内容。因此,懂数据不是重点,懂人才是。在全面连网的世界,数据将会越来越泛滥,懂数据收集管理的人也将会越来越普遍。但无论科技如何发展,懂人的人,恐怕永远是少数。人感性、容易受到环境影响,因此难以预期。
所以,大数据是社会科学重要的进展,但企业要精准抓住未来,经理人要拥有更好的决断力,还是要基于对不同人、不同性的理解,而不仅是科技工具的使用而已。大数据不是万灵丹,它只是涡轮加速器,至于方向盘,仍旧掌握在你的手上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01