
数据大未必是大数据 三谈大数据时代
极而言之,如果全世界网民的网络行为记录都能紧密整合在一起,那当然称得起大数据这个名称。反之,如果只有一个网民的一条孤零零网络记录,那当然撑不起大数据这个概念。问题在于如何在这两个极端之间,找到一个划分大数据与否的区分点,或者找到一组指标,能够具体衡量数据量从量变到质变的相对标准。这无论在学术研究上或是在商业实战上都很重要。试想若是某个公司自认为自己网络服务产生的数据量很大,觉得可以自称大数据公司了。于是说服董事会和投资者加大这方面的投入,购买大批专用设备和第三方专业服务,组建这方面的团队。经过一段时间的实践,发现投入产出不成比例,建立在大数据基础上的商业模式和产品服务研发不能得到理想的回报,那岂不是个悲剧?
以我的观察和实践经验,网络业中一个公司是否称得起拥有大数据至少要从三个维度考量:
数据规模----所谓大数据最基本的要求当然是数据规模大,但很难给出一个绝对的数字标准来确定大小,而只能用一些模糊的感觉来相对比较。例如,一个公司在年度预算中有了专门的,显著的数据存储和分析预算(例如,总预算的3-5%),有了独立的数据处理和分析部门,有了比较完整的数据存储,安全和保密政策与管理流程,有了高度依赖数据分析结果的商业模式,那么,可以说这个公司面临着利用大数据的机会或挑战了。
数据结构----数据量只是反映数据性质的一个指标,也许还不是最重要的指标。一天产生一百万个T数据的公司也许算不上大数据公司,而另一个一天只产生一万个T数据的公司也许反而是个大数据公司,其奥妙在于数据结构的复杂性。例如,A公司拥有一亿用户,但用户在A公司网站上只干一件事或一类事,比如获取新闻资讯,买买东西,或者玩玩游戏。那么由此产生的数据量虽然不小,但结构简单,重复性高,分析起来很容易,无非就是根据用户背景和使用习惯分分组,归归类,简单数据挖掘基本功足够,扯什么大数据就有点故弄玄虚了。B公司只有一千万用户,却是个开放平台,用户在此可以干互联网能够支持的所有事情,网络行为又可分为个人,群体,组织等层次,那么这个数据的结构就够复杂,能够支持深度挖掘和复杂建模,因而就可以算作大数据。
数据关联度----网络业一个常见现象就是随着数据量的增加,用户行为所产生的数据间的关系越来越不清晰,越来越难以捉摸,越来越相互孤立,也就是所谓的数据碎片化。这种碎片化主要来自两个方面:一是网站结构碎片化,逻辑混乱化,各种产品与服务之间相互孤立化,因而导致数据之间关系断裂,关联度很低。例如,明明是同一个用户在一个网站上使用了十种不同的产品和服务,但由于其中五种无需注册使用,其他五种又需要分别注册使用,结果这十种网络行为的数据无法整合在一起,或者需要通过种种技术手段和工具进行高成本的数据整合,以至于入不敷出。这也就减少了数据的含金量,降低了数据的可挖掘度,使得无论数据量如何大,结构如何复杂,也形成不了大数据。反之,如果一个WEB2.0时代的开放平台,架构清晰,逻辑分明,用户与用户,用户与用户行为,行为与行为之间都具有确定的关联性,那么这样的数据就具有极高的含金量,极高的分析挖掘价值,也就可以形成大数据。
所以,简而言之,大数据与否取决于数据规模,结构复杂性和关联性,简单地说某个公司的数据量大并不等于说这个公司具备拥有和利用大数据的前景。例如,直到google+诞生前,谷歌就不能声称自己是个大数据公司,因为它的海量搜索数据虽然规模庞大,但结构简单。尽管听说它的搜索算法已经囊括了六万多个变量,成千上万的数学和统计学模型,上千的博士和工程师参与分析,但在数据挖掘深度,搜索结果个人化,搜索结果与广告之间的相关度上进展有限,只有改良,没有突破。更严重的是,谷歌数百个产品和服务之间相互关联度极低,各干各的,无数数据库互不相干。各个部门之间以邻为壑,互不配合,更不整合。所以,面对以FACEBOOK和苹果为代表的WEB2.0时代以及由此产生的大数据战略机会,谷歌若干年来束手无策,只能靠不断扩展产品线对付。如果直到两年前谷歌还算不上大数据公司,那些自认为自己有点数据,或者会点加减乘除,或者以为掌握一些基本的数据库技术和KNOWHOW就可以招摇过市,到网络业和资本界呼风唤雨,是不是有点不知深浅,过于幼稚了呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23