京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据大未必是大数据 三谈大数据时代
极而言之,如果全世界网民的网络行为记录都能紧密整合在一起,那当然称得起大数据这个名称。反之,如果只有一个网民的一条孤零零网络记录,那当然撑不起大数据这个概念。问题在于如何在这两个极端之间,找到一个划分大数据与否的区分点,或者找到一组指标,能够具体衡量数据量从量变到质变的相对标准。这无论在学术研究上或是在商业实战上都很重要。试想若是某个公司自认为自己网络服务产生的数据量很大,觉得可以自称大数据公司了。于是说服董事会和投资者加大这方面的投入,购买大批专用设备和第三方专业服务,组建这方面的团队。经过一段时间的实践,发现投入产出不成比例,建立在大数据基础上的商业模式和产品服务研发不能得到理想的回报,那岂不是个悲剧?
以我的观察和实践经验,网络业中一个公司是否称得起拥有大数据至少要从三个维度考量:
数据规模----所谓大数据最基本的要求当然是数据规模大,但很难给出一个绝对的数字标准来确定大小,而只能用一些模糊的感觉来相对比较。例如,一个公司在年度预算中有了专门的,显著的数据存储和分析预算(例如,总预算的3-5%),有了独立的数据处理和分析部门,有了比较完整的数据存储,安全和保密政策与管理流程,有了高度依赖数据分析结果的商业模式,那么,可以说这个公司面临着利用大数据的机会或挑战了。
数据结构----数据量只是反映数据性质的一个指标,也许还不是最重要的指标。一天产生一百万个T数据的公司也许算不上大数据公司,而另一个一天只产生一万个T数据的公司也许反而是个大数据公司,其奥妙在于数据结构的复杂性。例如,A公司拥有一亿用户,但用户在A公司网站上只干一件事或一类事,比如获取新闻资讯,买买东西,或者玩玩游戏。那么由此产生的数据量虽然不小,但结构简单,重复性高,分析起来很容易,无非就是根据用户背景和使用习惯分分组,归归类,简单数据挖掘基本功足够,扯什么大数据就有点故弄玄虚了。B公司只有一千万用户,却是个开放平台,用户在此可以干互联网能够支持的所有事情,网络行为又可分为个人,群体,组织等层次,那么这个数据的结构就够复杂,能够支持深度挖掘和复杂建模,因而就可以算作大数据。
数据关联度----网络业一个常见现象就是随着数据量的增加,用户行为所产生的数据间的关系越来越不清晰,越来越难以捉摸,越来越相互孤立,也就是所谓的数据碎片化。这种碎片化主要来自两个方面:一是网站结构碎片化,逻辑混乱化,各种产品与服务之间相互孤立化,因而导致数据之间关系断裂,关联度很低。例如,明明是同一个用户在一个网站上使用了十种不同的产品和服务,但由于其中五种无需注册使用,其他五种又需要分别注册使用,结果这十种网络行为的数据无法整合在一起,或者需要通过种种技术手段和工具进行高成本的数据整合,以至于入不敷出。这也就减少了数据的含金量,降低了数据的可挖掘度,使得无论数据量如何大,结构如何复杂,也形成不了大数据。反之,如果一个WEB2.0时代的开放平台,架构清晰,逻辑分明,用户与用户,用户与用户行为,行为与行为之间都具有确定的关联性,那么这样的数据就具有极高的含金量,极高的分析挖掘价值,也就可以形成大数据。
所以,简而言之,大数据与否取决于数据规模,结构复杂性和关联性,简单地说某个公司的数据量大并不等于说这个公司具备拥有和利用大数据的前景。例如,直到google+诞生前,谷歌就不能声称自己是个大数据公司,因为它的海量搜索数据虽然规模庞大,但结构简单。尽管听说它的搜索算法已经囊括了六万多个变量,成千上万的数学和统计学模型,上千的博士和工程师参与分析,但在数据挖掘深度,搜索结果个人化,搜索结果与广告之间的相关度上进展有限,只有改良,没有突破。更严重的是,谷歌数百个产品和服务之间相互关联度极低,各干各的,无数数据库互不相干。各个部门之间以邻为壑,互不配合,更不整合。所以,面对以FACEBOOK和苹果为代表的WEB2.0时代以及由此产生的大数据战略机会,谷歌若干年来束手无策,只能靠不断扩展产品线对付。如果直到两年前谷歌还算不上大数据公司,那些自认为自己有点数据,或者会点加减乘除,或者以为掌握一些基本的数据库技术和KNOWHOW就可以招摇过市,到网络业和资本界呼风唤雨,是不是有点不知深浅,过于幼稚了呢?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24