
大数据邮件营销“3大逻辑”
大数据和大逻辑,正在成为我们通向成功的路径。正如在实践邮件营销的道路中,我们的邮件营销生态系统变得更加复杂,我们也开始拥有越来越多具有价值的数据点,那么接下来我们应该往哪里走呢?我认为,接下来我们需要做的是,为复杂的邮件营销生态系统构建一套逻辑运行方式,化繁为简,借助工具,去转化这些潜在价值。那么目前市场环境背景下,邮件营销运作主要遵循哪些大逻辑概念?下面是全球领先的邮件营销服务机构webpower中国区给客户提供的开展邮件营销活动的3个”大逻辑“,现摘录如下,供开展邮件营销活动的企业参考。
1.生命周期逻辑
尽管理解和利用生命周期的逻辑病不是一个新的概念,许多电子邮件营销者现在都开始应用它,欣赏它带来的价值。生命周期邮件通常只占整体邮件发送量的15%,但据称可以产生收入的35%。
从客户和产品这两个最普通的视角,你就可以多种方式看到生命周期逻辑。一些品牌已经应该产品生命周期逻辑,通过针对他们的最畅销产品简单地发送补货邮件提醒用户重新回来购买,取得了巨大的成功。但是这种类型的逻辑也并适用于所有的产品。
曾经有人坚持说,他们的产品不需要“更换提醒”邮件。但是相反,我认为无论是长久耐用品,快消品,或者是介于两者之间的商品,每个产品都有一个生命周期:积极的运动者需要以规律的频率更换自己的跑鞋,汽车拥有者需要每隔一些年更换汽车等等。
2.情境逻辑
我相信,一部分市场营销者知道了facebook将终结@facebook.com后缀的电子邮件地址的消息,之后@facebook.com的用户能够设置帐号,使@facebook.com邮箱中的邮件被转发到他们设置的其他邮箱。
因此,类似于在去年雅虎宣布停止中国雅虎邮箱服务的事件后,webpower中国区建议,品牌通过给使用中国雅虎邮箱地址注册的用户发送关怀类邮件,或在邮件内增加“更换注册邮箱地址”按钮等方式,鼓励用户及时更换注册邮箱地址,以确保用户可以继续收到发送的邮件。市场营销者也可以对这部分用户邮件地址数据等进行更新,重新激活这些邮件用户等。抓住某些具体事件或时间框架,市场营销者可以利用情境逻辑做很多的事情,虽然这种情景逻辑不一定经常可以利用。
3.行为逻辑
根据您的用户行为定制化邮件并不是一个新的概念,但是如果在其中,特别是加入一些预测方法以推测下一个购买和互动,情况就可能变得非常复杂。比较基础的应用就是针对“浏览-购物车丢弃行为”的用户购物车丢弃提醒邮件。而更深层次的应用,如Booking等一些旅游品牌可以利用有关目的地搜索或费用、星级、便利性等信息为规划下一封邮件的内容提供指导。考虑到行为数据体积量是不断呈增长趋势的,如果企业可以通过设置逻辑参数,借助智能化的BI计算预测模型,配以脱离人工操作的自动化邮件触发,这样对邮件营销的效率和效益都是大大提升,目前国际领先的邮件营销机构webpower中国区已经可以实现邮件营销的自动化智能化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21