
大数据的商业价值到底有多大
当很多中国企业还在纠结于如何将数据演变为成熟的商业模式时,Teradata天睿公司已经开始协助客户实践数据时代(Data Time)变现的能力。
很多人听说过那则经典的“啤酒+尿片”的大数据营销案例,却不知道背后的诞生地却正是Teradata。低调的行事风格来源于Teradata一直践行的商业理念,“始终思考着能协助客户在驾驭数据的能力上提供哪些价值”,这是Teradata天睿公司大中华区首席执行官辛儿伦在接受《英才》记者专访时多次提到的一句话。
出身新闻世家的辛儿伦,年轻时的梦想是当一名新闻主播,但电脑科学是上世纪80-90年代的热门,听从了家人的建议,他选择了理工科。辛儿伦曾在微软公司工作近15年,任职微软大中华区副总裁负责企业事业部。加入Teradata 6年来,带领大中华区业务保持每年双位数的增长速度,并已经成为集团除美国以外的第二大市场。
80倍回报
大数据的商业价值到底有多大?
“可能是80倍的回报。”据辛儿伦介绍,Teradata曾帮助一家国内的领先快递公司利用大数据分析优化人力、物流、调度、计费模式以及清算方法等等,“如果将他们付给Teradata的投资成本算作1块钱,最终这家快递公司运用大数据分析方法,获得了约80块钱的回收利润。”
类似跨行业数据变现的案例还体现在帮助大型银行业进行社区银行的选址、旅游行业的数据分析等等,不过辛儿伦认为,“数据变现在全球还是刚起步的阶段,许多项目还处于雏形阶段,但这些项目一旦验证成功,它会向一对多或多对多的企业关系延伸,项目的范畴上会进行更大的拓广。可以说未来10—30年将远远超越当前我们所能想象到的。”
纵观公司的客户名单,仅中国市场就覆盖了政府公共服务、地铁、交通运输、航空、通信行业、银行、保险、证券、物流、快递行业、制造行业、汽车零售、电子商务等超过10个行业。
而寻找新的增长点也是辛儿伦和他的团队经常思考的问题,“过去这几年,我们在铁路运输、快递、航空发展特别迅猛。在行业的扩展方面,需要扩展更多的领域和产业,类似医疗,也是我们一直以来非常关注的。”
“我们已经不再仅仅是结构化的数据分析、数据仓库的提供商,已经是一个大数据分析解决方案的提供商。”辛儿伦认为Teradata所能服务的行业几乎是无边界的,“纵轴上讲,只要你有数据,不管是什么结构,都可以做信息的挖掘和数据的分析。从横轴上来讲,我们的客户是跨越多行业的延伸。”
随着中国经济体量的不断膨胀,各个行业积累了庞大的数据资产,且增长速度极快。很多中国企业已经意识到这些数据的商业价值和用途,但在驾驭数据,有效整合和分析,进而转换为信息价值以采取正确决策和行动的全过程中面临挑战。
“Teradata的核心竞争力是对信息的驾驭能力,对我们的客户,我们提供良好的方法论、顾问、咨询、产品、数据架构和成熟的建设经验,并融合一些好的开源技术,持续为客户创造价值。”辛儿伦告诉《英才》记者。
并购落地
连续16年蝉联Gartner数据分析领域领导者象限榜首,奠定了Teradata在数据分析这一领域的领头羊地位。
除了与中国客户深厚的合作关系,强大的技术以及商业理念以外,频繁的并购,实现数据分析生态系统的完善也是重要手段之一。
“Aster Data在当时被Gartner认为是全世界大数据供应商里的领导者。”辛儿伦对《英才》记者表示,“Aster Data在被Teradata集团总部收购后,第一时间就在中国落地。在过去三年半的时间,我们成立了专门负责在中国推广和服务的Aster Data技术团队,现在大中华区已经有几十家客户采用Aster技术。我要特别感谢我们的客户。”
最近几年,Teradata保持着强劲的并购势头。2014年公司收购了一家开源Hadoop部署咨询公司——Think Big Analytics。该年还收购了Hadoop元数据管理工具提供商Revelytix以及SQL-on-Hadoop厂商Hadapt。
而2011年花费2.63亿美元收购的非结构化数据处理工具软件厂商Aster Data Systems,被认为是最具代表性的一笔。
这些收购让Teradata在大数据经济的快速转型时代巩固原有阵地的同时,通过自身的持续研发,结合并购带来的新技术,有效地扩展了自己的市场半径。
“Teradata中国市场的业务量和增速5年前已经超过日本,大中华区已经是美国以外最大的业务板块。”辛儿伦说道。
定制经济
“20世纪七八十年代以来,IT产业一直是小I大T,未来将是大I小T。”根据辛儿伦的判断,过去二三十年的IT行业专注于Technology(技术)运用,以及技术研发的价值。但IT不仅仅是Technology,IT是两个课题,是Information(信息)和Technology(技术)。
“未来30年,大I小T的时代来临,政府、企业、企业的IT部门、IT供应商等,关注的主轴将会更多在Information这个课题,这将会是一个绝佳的机会,而且是一个最佳的发力时间点。”这对于大数据分析专家Teradata来说,未来想象空间巨大。
按照辛儿伦的理念,当前互联网产业变革所诞生的优秀企业都可以拿这个逻辑来理解。“互联网+传统产业的边界延伸更多的是驾驭信息的课题上,在信息变革和信息安全保障下产生多元化的商业模式、创新性的思维,而不只是技术的延伸。”
“同时,消费者的需求也产生自主式的革新,从注意力经济转化成为消费者意向经济。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18