
大数据的商业价值到底有多大
当很多中国企业还在纠结于如何将数据演变为成熟的商业模式时,Teradata天睿公司已经开始协助客户实践数据时代(Data Time)变现的能力。
很多人听说过那则经典的“啤酒+尿片”的大数据营销案例,却不知道背后的诞生地却正是Teradata。低调的行事风格来源于Teradata一直践行的商业理念,“始终思考着能协助客户在驾驭数据的能力上提供哪些价值”,这是Teradata天睿公司大中华区首席执行官辛儿伦在接受《英才》记者专访时多次提到的一句话。
出身新闻世家的辛儿伦,年轻时的梦想是当一名新闻主播,但电脑科学是上世纪80-90年代的热门,听从了家人的建议,他选择了理工科。辛儿伦曾在微软公司工作近15年,任职微软大中华区副总裁负责企业事业部。加入Teradata 6年来,带领大中华区业务保持每年双位数的增长速度,并已经成为集团除美国以外的第二大市场。
80倍回报
大数据的商业价值到底有多大?
“可能是80倍的回报。”据辛儿伦介绍,Teradata曾帮助一家国内的领先快递公司利用大数据分析优化人力、物流、调度、计费模式以及清算方法等等,“如果将他们付给Teradata的投资成本算作1块钱,最终这家快递公司运用大数据分析方法,获得了约80块钱的回收利润。”
类似跨行业数据变现的案例还体现在帮助大型银行业进行社区银行的选址、旅游行业的数据分析等等,不过辛儿伦认为,“数据变现在全球还是刚起步的阶段,许多项目还处于雏形阶段,但这些项目一旦验证成功,它会向一对多或多对多的企业关系延伸,项目的范畴上会进行更大的拓广。可以说未来10—30年将远远超越当前我们所能想象到的。”
纵观公司的客户名单,仅中国市场就覆盖了政府公共服务、地铁、交通运输、航空、通信行业、银行、保险、证券、物流、快递行业、制造行业、汽车零售、电子商务等超过10个行业。
而寻找新的增长点也是辛儿伦和他的团队经常思考的问题,“过去这几年,我们在铁路运输、快递、航空发展特别迅猛。在行业的扩展方面,需要扩展更多的领域和产业,类似医疗,也是我们一直以来非常关注的。”
“我们已经不再仅仅是结构化的数据分析、数据仓库的提供商,已经是一个大数据分析解决方案的提供商。”辛儿伦认为Teradata所能服务的行业几乎是无边界的,“纵轴上讲,只要你有数据,不管是什么结构,都可以做信息的挖掘和数据的分析。从横轴上来讲,我们的客户是跨越多行业的延伸。”
随着中国经济体量的不断膨胀,各个行业积累了庞大的数据资产,且增长速度极快。很多中国企业已经意识到这些数据的商业价值和用途,但在驾驭数据,有效整合和分析,进而转换为信息价值以采取正确决策和行动的全过程中面临挑战。
“Teradata的核心竞争力是对信息的驾驭能力,对我们的客户,我们提供良好的方法论、顾问、咨询、产品、数据架构和成熟的建设经验,并融合一些好的开源技术,持续为客户创造价值。”辛儿伦告诉《英才》记者。
并购落地
连续16年蝉联Gartner数据分析领域领导者象限榜首,奠定了Teradata在数据分析这一领域的领头羊地位。
除了与中国客户深厚的合作关系,强大的技术以及商业理念以外,频繁的并购,实现数据分析生态系统的完善也是重要手段之一。
“Aster Data在当时被Gartner认为是全世界大数据供应商里的领导者。”辛儿伦对《英才》记者表示,“Aster Data在被Teradata集团总部收购后,第一时间就在中国落地。在过去三年半的时间,我们成立了专门负责在中国推广和服务的Aster Data技术团队,现在大中华区已经有几十家客户采用Aster技术。我要特别感谢我们的客户。”
最近几年,Teradata保持着强劲的并购势头。2014年公司收购了一家开源Hadoop部署咨询公司——Think Big Analytics。该年还收购了Hadoop元数据管理工具提供商Revelytix以及SQL-on-Hadoop厂商Hadapt。
而2011年花费2.63亿美元收购的非结构化数据处理工具软件厂商Aster Data Systems,被认为是最具代表性的一笔。
这些收购让Teradata在大数据经济的快速转型时代巩固原有阵地的同时,通过自身的持续研发,结合并购带来的新技术,有效地扩展了自己的市场半径。
“Teradata中国市场的业务量和增速5年前已经超过日本,大中华区已经是美国以外最大的业务板块。”辛儿伦说道。
定制经济
“20世纪七八十年代以来,IT产业一直是小I大T,未来将是大I小T。”根据辛儿伦的判断,过去二三十年的IT行业专注于Technology(技术)运用,以及技术研发的价值。但IT不仅仅是Technology,IT是两个课题,是Information(信息)和Technology(技术)。
“未来30年,大I小T的时代来临,政府、企业、企业的IT部门、IT供应商等,关注的主轴将会更多在Information这个课题,这将会是一个绝佳的机会,而且是一个最佳的发力时间点。”这对于大数据分析专家Teradata来说,未来想象空间巨大。
按照辛儿伦的理念,当前互联网产业变革所诞生的优秀企业都可以拿这个逻辑来理解。“互联网+传统产业的边界延伸更多的是驾驭信息的课题上,在信息变革和信息安全保障下产生多元化的商业模式、创新性的思维,而不只是技术的延伸。”
“同时,消费者的需求也产生自主式的革新,从注意力经济转化成为消费者意向经济。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29