
加强大数据的司法应用
大数据是世界最新的技术革命、商业革命和观念革命。可以说,谁抢占了大数据研究利用的先机,谁就在未来社会拥有更大的控制权和利益。2012年美国政府投资2亿美元启动“大数据研究和发展计划”,2012年7月我国制定《“十二五”国家战略性新兴产业发展规划》,明确提出“加强以海量数据处理软件等为代表的基础软件的开发”。中国拥有庞大的人群和应用市场,是世界上最复杂的大数据国家。加强大数据研究,对提升我国综合国力,缩小与发达国家之间的科技差距,具有重大意义。
大数据可以运用到各行各业。加强大数据的司法应用,是人民法院推进司法为民和公正司法的必然要求,是信息化建设的必然趋势。笔者认为,加强大数据的司法应用,应做到以下几点:
树立大数据意识
积极转换思维观念,重视数据、尊重数据、“让数据发声”。既要注重对已有司法数据的保存、分析应用和深度挖掘,也要更加注重关联分析方法,从关联数据信息中发现问题、判断趋势、策划解决方案。树立容忍误差的意识,大数据的分析准确率虽不可能达到100%,但是仍然具有极高的准确率,可以作为司法决策的重要依据。
加强顶层设计
对大数据的研究应用,最为妥当的是从顶层设计入手,由最高人民法院制订统一的发展规划,明确工作方向、具体任务和发展计划,从而避免多重投入、资源耗费。最高人民法院可以在信息化建设起步早、基础好、技术强、经费保障充足的地方法院中选择试点法院,摸索和积累大数据研究利用经验,为在全国法院系统内全面展开大数据研究利用打好基础。
找准突破点
人民法院多年来数据的积累应用主要集中在司法统计上,突破点同样落在司法统计上。在司法统计职能上,应从单纯的司法数据统计汇总,向司法统计数据的综合利用推进,拓展司法统计在信息咨询、决策辅助、服务管理等方面的作用;在司法统计规范上,应统一司法统计标准、建构科学合理的司法统计指标体系;在司法统计调查方式上,健全全面调查、抽样调查、重点调查并行的调查方式。
加强数据信息采集
大数据要求数据是全体数据、不是随机数据;注重混杂性、不是精确性;注重数据之间的相关关系,不是因果关系。因此应尽可能地采集各种数据信息。在采集内容上,不仅要采集传统的案件信息数据,还要采集案件稳定风险、当事人对判决意见、公众对法院判决认同度、司法热点、不同社会群体司法需求等与审判执行工作相关的数据信息以及经济社会发展数据信息;在采集方法上,不仅要继续深化法院系统内的数据信息采集,还可通过购买方式、委托社会调查咨询机构采集相关司法数据。
加强数据分析利用
大数据的关键在于通过对海量数据的分析加工实现数据的“二次利用”。强化海量数据的集中存储,做到安全保存和灵活调用;加强对海量数据的自动挖掘和分析,特别是在大量裁判案例基础上,运用大数据分析方法对法院各类案件的审判工作建构裁判模型,为法官裁判案件提供参考;对迫切需要解决的法院工作问题开展数据分析实践,为解决突出问题提供实践解决方案,供司法决策参考;加强对混杂性数据的关联分析,判断司法工作中存在的被忽视问题以及趋势。
强化数据整合共享
数据的整合共享对于大数据的研究利用具有重要价值。在最高人民法院统一指导下,加强“天平工程”建设,建设审判流程公开、裁判文书公开、执行信息公开三大平台,实现全国各级各地法院之间数据信息互联互通、资源共享;走出数据孤岛,加强与有关部门、社会组织等的联系,建立大范围的社会信息采集和共享机制;加强法院与检察、公安、司法机关之间的数据信息交流共享,及时把握审判工作可能面临的形势任务,提高预知预警能力,提前部署应对。
加强专门人才建设
大数据的研究利用需要专门人才保障。应建立或明确大数据研究机构,在最高人民法院、省高级人民法院可以设立司法数据研究中心,专司大数据研究利用工作,在中级、基层法院明确负责该项工作的职能部门;加大对专门人才的引进和培养,引进热爱法院工作、精通IT技术的专门人才,加强与高校、科研院所和企业的合作,对法院现有技术人员开展培训活动,提高技术人员的科技水平;加强对法院领导和干警的科技培训,增强大数据意识,熟悉相关系统和工具,提高数据挖掘和分析利用技能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07