京公网安备 11010802034615号
经营许可证编号:京B2-20210330
加强大数据的司法应用
大数据是世界最新的技术革命、商业革命和观念革命。可以说,谁抢占了大数据研究利用的先机,谁就在未来社会拥有更大的控制权和利益。2012年美国政府投资2亿美元启动“大数据研究和发展计划”,2012年7月我国制定《“十二五”国家战略性新兴产业发展规划》,明确提出“加强以海量数据处理软件等为代表的基础软件的开发”。中国拥有庞大的人群和应用市场,是世界上最复杂的大数据国家。加强大数据研究,对提升我国综合国力,缩小与发达国家之间的科技差距,具有重大意义。
大数据可以运用到各行各业。加强大数据的司法应用,是人民法院推进司法为民和公正司法的必然要求,是信息化建设的必然趋势。笔者认为,加强大数据的司法应用,应做到以下几点:
树立大数据意识
积极转换思维观念,重视数据、尊重数据、“让数据发声”。既要注重对已有司法数据的保存、分析应用和深度挖掘,也要更加注重关联分析方法,从关联数据信息中发现问题、判断趋势、策划解决方案。树立容忍误差的意识,大数据的分析准确率虽不可能达到100%,但是仍然具有极高的准确率,可以作为司法决策的重要依据。
加强顶层设计
对大数据的研究应用,最为妥当的是从顶层设计入手,由最高人民法院制订统一的发展规划,明确工作方向、具体任务和发展计划,从而避免多重投入、资源耗费。最高人民法院可以在信息化建设起步早、基础好、技术强、经费保障充足的地方法院中选择试点法院,摸索和积累大数据研究利用经验,为在全国法院系统内全面展开大数据研究利用打好基础。
找准突破点
人民法院多年来数据的积累应用主要集中在司法统计上,突破点同样落在司法统计上。在司法统计职能上,应从单纯的司法数据统计汇总,向司法统计数据的综合利用推进,拓展司法统计在信息咨询、决策辅助、服务管理等方面的作用;在司法统计规范上,应统一司法统计标准、建构科学合理的司法统计指标体系;在司法统计调查方式上,健全全面调查、抽样调查、重点调查并行的调查方式。
加强数据信息采集
大数据要求数据是全体数据、不是随机数据;注重混杂性、不是精确性;注重数据之间的相关关系,不是因果关系。因此应尽可能地采集各种数据信息。在采集内容上,不仅要采集传统的案件信息数据,还要采集案件稳定风险、当事人对判决意见、公众对法院判决认同度、司法热点、不同社会群体司法需求等与审判执行工作相关的数据信息以及经济社会发展数据信息;在采集方法上,不仅要继续深化法院系统内的数据信息采集,还可通过购买方式、委托社会调查咨询机构采集相关司法数据。
加强数据分析利用
大数据的关键在于通过对海量数据的分析加工实现数据的“二次利用”。强化海量数据的集中存储,做到安全保存和灵活调用;加强对海量数据的自动挖掘和分析,特别是在大量裁判案例基础上,运用大数据分析方法对法院各类案件的审判工作建构裁判模型,为法官裁判案件提供参考;对迫切需要解决的法院工作问题开展数据分析实践,为解决突出问题提供实践解决方案,供司法决策参考;加强对混杂性数据的关联分析,判断司法工作中存在的被忽视问题以及趋势。
强化数据整合共享
数据的整合共享对于大数据的研究利用具有重要价值。在最高人民法院统一指导下,加强“天平工程”建设,建设审判流程公开、裁判文书公开、执行信息公开三大平台,实现全国各级各地法院之间数据信息互联互通、资源共享;走出数据孤岛,加强与有关部门、社会组织等的联系,建立大范围的社会信息采集和共享机制;加强法院与检察、公安、司法机关之间的数据信息交流共享,及时把握审判工作可能面临的形势任务,提高预知预警能力,提前部署应对。
加强专门人才建设
大数据的研究利用需要专门人才保障。应建立或明确大数据研究机构,在最高人民法院、省高级人民法院可以设立司法数据研究中心,专司大数据研究利用工作,在中级、基层法院明确负责该项工作的职能部门;加大对专门人才的引进和培养,引进热爱法院工作、精通IT技术的专门人才,加强与高校、科研院所和企业的合作,对法院现有技术人员开展培训活动,提高技术人员的科技水平;加强对法院领导和干警的科技培训,增强大数据意识,熟悉相关系统和工具,提高数据挖掘和分析利用技能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06