
加强大数据的司法应用
大数据是世界最新的技术革命、商业革命和观念革命。可以说,谁抢占了大数据研究利用的先机,谁就在未来社会拥有更大的控制权和利益。2012年美国政府投资2亿美元启动“大数据研究和发展计划”,2012年7月我国制定《“十二五”国家战略性新兴产业发展规划》,明确提出“加强以海量数据处理软件等为代表的基础软件的开发”。中国拥有庞大的人群和应用市场,是世界上最复杂的大数据国家。加强大数据研究,对提升我国综合国力,缩小与发达国家之间的科技差距,具有重大意义。
大数据可以运用到各行各业。加强大数据的司法应用,是人民法院推进司法为民和公正司法的必然要求,是信息化建设的必然趋势。笔者认为,加强大数据的司法应用,应做到以下几点:
树立大数据意识
积极转换思维观念,重视数据、尊重数据、“让数据发声”。既要注重对已有司法数据的保存、分析应用和深度挖掘,也要更加注重关联分析方法,从关联数据信息中发现问题、判断趋势、策划解决方案。树立容忍误差的意识,大数据的分析准确率虽不可能达到100%,但是仍然具有极高的准确率,可以作为司法决策的重要依据。
加强顶层设计
对大数据的研究应用,最为妥当的是从顶层设计入手,由最高人民法院制订统一的发展规划,明确工作方向、具体任务和发展计划,从而避免多重投入、资源耗费。最高人民法院可以在信息化建设起步早、基础好、技术强、经费保障充足的地方法院中选择试点法院,摸索和积累大数据研究利用经验,为在全国法院系统内全面展开大数据研究利用打好基础。
找准突破点
人民法院多年来数据的积累应用主要集中在司法统计上,突破点同样落在司法统计上。在司法统计职能上,应从单纯的司法数据统计汇总,向司法统计数据的综合利用推进,拓展司法统计在信息咨询、决策辅助、服务管理等方面的作用;在司法统计规范上,应统一司法统计标准、建构科学合理的司法统计指标体系;在司法统计调查方式上,健全全面调查、抽样调查、重点调查并行的调查方式。
加强数据信息采集
大数据要求数据是全体数据、不是随机数据;注重混杂性、不是精确性;注重数据之间的相关关系,不是因果关系。因此应尽可能地采集各种数据信息。在采集内容上,不仅要采集传统的案件信息数据,还要采集案件稳定风险、当事人对判决意见、公众对法院判决认同度、司法热点、不同社会群体司法需求等与审判执行工作相关的数据信息以及经济社会发展数据信息;在采集方法上,不仅要继续深化法院系统内的数据信息采集,还可通过购买方式、委托社会调查咨询机构采集相关司法数据。
加强数据分析利用
大数据的关键在于通过对海量数据的分析加工实现数据的“二次利用”。强化海量数据的集中存储,做到安全保存和灵活调用;加强对海量数据的自动挖掘和分析,特别是在大量裁判案例基础上,运用大数据分析方法对法院各类案件的审判工作建构裁判模型,为法官裁判案件提供参考;对迫切需要解决的法院工作问题开展数据分析实践,为解决突出问题提供实践解决方案,供司法决策参考;加强对混杂性数据的关联分析,判断司法工作中存在的被忽视问题以及趋势。
强化数据整合共享
数据的整合共享对于大数据的研究利用具有重要价值。在最高人民法院统一指导下,加强“天平工程”建设,建设审判流程公开、裁判文书公开、执行信息公开三大平台,实现全国各级各地法院之间数据信息互联互通、资源共享;走出数据孤岛,加强与有关部门、社会组织等的联系,建立大范围的社会信息采集和共享机制;加强法院与检察、公安、司法机关之间的数据信息交流共享,及时把握审判工作可能面临的形势任务,提高预知预警能力,提前部署应对。
加强专门人才建设
大数据的研究利用需要专门人才保障。应建立或明确大数据研究机构,在最高人民法院、省高级人民法院可以设立司法数据研究中心,专司大数据研究利用工作,在中级、基层法院明确负责该项工作的职能部门;加大对专门人才的引进和培养,引进热爱法院工作、精通IT技术的专门人才,加强与高校、科研院所和企业的合作,对法院现有技术人员开展培训活动,提高技术人员的科技水平;加强对法院领导和干警的科技培训,增强大数据意识,熟悉相关系统和工具,提高数据挖掘和分析利用技能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23