
别用大数据去分析销售,去见你的客户吧
在业务科技化的年代,许多B2B (Business-to-Business)型态的企业逐渐改变资讯收集的方式,不再以传统的面对面访谈为主,反而著重于大型数据库的建立与分析,作为市场开发及关系建立的依据。
大型数据库(Big Data)是相当重要的存在,若有大型数据库作为市场开发及关系建立的依据,企业间的电子商务将更容易推动与运行。
然而如此强大的科技产物也并非毫无缺陷,这些论据与图表都确实与销售直接相关且有利于增加营业额,但其数据的收集往往局限于竞争数据、销售活动数据、物业买卖和整体市场趋势,并无法提供更深入的洞察,无法让营销人员了解客户的脑中正在想什么。
这就像情治单位的世界一样,即使有卫星帮忙收集情报,更重要的资讯也只能一对一且面对面地套出来。
若极端一点思考,还是有些公司并没有设立大型数据库,他们仍靠业务部门去收集与管理他们的研究数据,根据2012年CSO Insights针对「数据存取对销售业绩的影响」的考察报告,营销人员平均花24%的时间在为电访做相关资讯搜寻的准备工作,尽管这会占去他们好一部份原本可用于销售的时间。
做量化分析不够,质化分析更能全面探索顾客需求
再想想另一个极端,许多公司拥有相当庞大的大型数据库,大到连解释分析或数据管理都很困难,只能极有限地发挥大型数据库的效用,这问题也在CSO Insights 的同一份考察报告中被点出,将近90% 的业务主管将销售机会的错失归咎于资讯量过载,想从大型数据库中筛选出有价值的分析有时就像大海捞针一般。
对现有客户或潜在客户做定量分析确实有助于销售,但大型数据库并无法描述完整的局面,定性且定量的分析才能更进一步地了解客户,也就是说,着眼点不能只有数字,将论据、图表,还要有更多的陈述文字也加入分析,才能全面地探索顾客的想法及需求。
客户大不同,分析出来的数据真的适用吗?
还有一点也需铭记在心,大型资料库的分析结果可能产生误导,毕竟数据是来自各个不同的客户端,分析所得的趋势有时并不适用于所有客户,也可能会因为客户的资本额造成不同比重的数据来源,如果只以整体趋势套用于所有客户,那就是冒着失去某些客户的风险。
为了解客户,大型资料库的协助面向基本上会包含下述几项指标:
1.策略方向
2.指定需求
3.未列于RFP (Request For Proposal)的潜在需求
4.决策过程及参与人员
5.顾客对己方成果表现及客户服务的印象
6.顾客对竞争公司的印象定性定量地观察客户,才能做好客制化的服务
然而,如果想找出现有客户及潜在客户的上述量化数据,方法只有一种:直接问他。
想了解更核心的价值,就必须藉由更深入的问题,直接探求个别状况,仔细地聆听客户的反应且分析你要的资讯,想当然尔,这不是份简短的问卷可以完事的,免不了要20至60分钟的深度面谈。
当进行深度面谈时,应确保对方为多位该公司的资深主管人员,为的是要确定他们的观点代表了该公司的实际营运方向。谈话内容应包含一系列有组织过的探测性问题,并以开放式问题让对方能描述出实际状况,试着挖掘出对方潜在的反应。
如果,你觉得对方并未??说实话或隐藏了部分事实,应该将相关问题带到较客观的第三方并再次进行面谈及分析。
收集量化数据只完成了一半的工作,接下来就是要从得到的讯息中客制化各个客户的要求,如果获得的讯息不完整或有误,就会事倍功半,因此定性且定量地观察客户们的状况将更有效率地符合对方的需求及改善己方的表现。
不可讳言的,从大型数据库获得的统计数字确实能提供许多销售灵感,但若能辅以实际晤谈或聆听社群媒体,灵活地切换不同的接触方式,才能定性且定量地切中客户的实际需求,提升销售及服务品质的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16