
数据结构与算法之排序
堆排序、快速排序、希尔排序、直接选择排序不是稳定的排序算法,而基数排序、冒泡排序、直接插入排序、折半插入排序、链表插入排序、归并排序是稳定的排序算法。
直接插入排序 T(n) = O(n^2)
直接插入排序「Insertion Sort」的基本思想是:每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子序列中的适当位置,直到全部记录插入完成为止。
设数组为a[0…n-1]:
1. 初始时,a[0]自成1个有序区,无序区为a[1..n-1]。令i=1。
2. 将a[i]并入当前的有序区a[0…i-1]中形成a[0…i]的有序区间。
3. i++并重复第二步直到i==n-1。排序完成。
折半插入排序 T(n) = O(n^2)
折半插入排序是对直接插入排序的简单改进,对于折半插入排序而言,当需要插入第i个元素时,它不会逐个进行比较每个元素,而是:
1. 计算0~i-1索引的中间点,也就是用i索引处的元素和(0+i-1)/2索引处的元素进行比较,如果i索引处的元素值大,就直接在(0+i-1)/2~i-1半个范围内进行搜索;反之在0~(0+i-1)/2半个范围内搜索,这就是所谓的折半
2. 在半个范围内搜索时,按照1的方法不断地进行折半搜索,这样就可以将搜索范围缩小到1/2、1/4、1/8…,从而快速的确定插入位置
链表插入排序 T(n) = O(n^2)
链表插入排序的基本思想是:假设前 n-1个节点有序,取最后节点,沿链表依次查找比较,直到合适位置,修改「本节点」和「待插入节点」的指针。
1. 沿头节点遍历链表,比较此节点、待插入节点、后继节点的大小关系,直到:此节点 < 待插入节点 < 后继节点。
2. 令「此节点」指向「待插入节点」,「待插入节点」指向「后继节点」。
Shell 排序(希尔排序) T(n) = O(n^1.5)
希尔排序的实质就是分组插入排序,该方法又称缩小增量排序。该方法的基本思想是:
1. 先将整个待排元素序列分割成若干个子序列(由相隔某个“增量”的元素组成的)分别进行直接插入排序
2. 然后依次缩减增量再进行排序,待整个序列中的元素基本有序(增量足够小,1)时,再对全体元素进行一次直接插入排序
冒泡排序 T(n) = O(n^2)
冒泡排序的基本思想是,对相邻的元素进行两两比较,顺序相反则进行交换,这样,每一趟会将最小或最大的元素“浮”到顶端,最终达到完全有序。
快速排序 范围T(n) = O(n*lg n) ~ O(n^2) | 平均T(n) = O(n*lg n)
快速排序采用了分治(递归)的方法,该方法的基本思想是:
先从数列中取出一个数作为基准数
分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边
再对左右区间重复第二步,直到各区间只有一个数
直接选择排序 T(n) = O(n^2)
直接选择排序(Straight Select Sorting) 也是一种简单的排序方法,它的基本思想是:
1. 从R[0]~R[n-1]中选取最小值,与R[0]交换
2. 从R{1}~R[n-1]中选取最小值,与R[1]交换
3. 第i次从R[i-1]~R[n-1]中选取最小值,与R[i-1]交换
堆选择排序 T(n) = O(n*log2n)
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。堆分为大根堆和小根堆,下图为小根堆:
「如图所示依次类推」
归并排序 T(n) = O(n*log2n)
归并排序是建立在归并操作上的一种有效的排序算法,采用了分治思想。如下图的二路归并:
基数排序
基数排序(radix sort)属于「分配式排序」,有点类似 「桶排」。
1. 分配10个桶,桶编号为0-9,以个位数数字为桶编号依次入桶,将桶里的数字顺序取出来
2. 再次入桶,不过这次以十位数的数字为准,进入相应的桶,同一桶内有序
3. 再次取出,排序完成
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05